Influence of pyrethroid and neonicotinoid insecticides on post-metamorphic amphibians (literature review)

  • V. Ya. Gasso Oles Honchar Dnipro National University, Dnipro
  • S. V. Yermolenko Oles Honchar Dnipro National University, Dnipro
  • V. B. Petrushevskyi Oles Honchar Dnipro National University, Dnipro
  • A. O. Valeskaln Oles Honchar Dnipro National University, Dnipro
  • I. A. Petrov Oles Honchar Dnipro National University, Dnipro
Keywords: pesticides, environmental pollution, toxicity, oxidative stress, biomarkers


Agricultural activity in the global world is accompanied by the use of a significant number of synthetic insecticides for the control of insect pests. Pyrethroid and neonicotinoid insecticides are among the widely used insecticides in many countries for the control of crop pests. They are a generation of synthetic insecticides that have replaced the more environmentally stable organophosphorus and organochlorine compounds. Pyrethroid and neonicotinoid insecticides were thought to have low toxicity to vertebrates, leading to their widespread use and increased production. However, many studies have emerged in recent decades that have shown that, under certain conditions, these substances can cause significant damage to the internal systems of amphibians. Recently, special studies have also revealed the toxic effects of pyrethroids and neonicotinoids on the post-metamorphic stages of amphibians, which had previously been ignored. It has also been noted that abnormalities in gastrointestinal tract functions occur, leading to abnormalities in the digestive system. Pyrethroid and neonicotinoid insecticides have been shown to affect the biochemical and histological parameters of amphibians. The possible genotoxicity of these insecticides resulted in producing erythrocytes with abnormal nuclei and an increased number of micronuclei in amphibian cells. Meanwhile, changes in the activity of antioxidant enzymes and increases in lipid peroxidation products could be used as biomarkers of oxidative stress in amphibians under the influence of pyrethroid and neonicotinoid insecticides. The available literature also indicates that these insecticides appear to affect the nervous system of amphibians and induce changes in their behaviour. At the same time, our data suggest that it is neuromolecular biomarkers that can be practised to determine the toxic effects of insecticides on non-target species. Such biomarkers can be used in the context of the low-dose influence of insecticides, which however requires additional research on amphibians.


Agostini, M. G., Roesler, I., Bonetto, C., Ronco, A. E., & Bilenca, D. (2020). Pesticides in the real world: The consequences of GMO-based intensive agriculture on native amphibians. Biological conservation, 241, 108355.

Alnoaimi, F., Dane, H., & Şişman, T. (2021). Histopathologic and genotoxic effects of deltamethrin on marsh frog, Pelophylax ridibundus (Anura: Ranidae). Environmental science and pollution research, 28(3), 3331–3343.

Aydin-Sinan, H., Güngördü, A., & Ozmen, M. (2012). Toxic effects of deltamethrin and λ-cyhalothrin on Xenopus laevis tadpoles. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 47(5), 397–402.

Cabagna, M. C., Lajmanovich, R. C., Peltzer, P. M., Attademo, A. M., & Ale, E. (2006). Induction of micronuclei in tadpoles of Odontophrynus americanus (Amphibia: Leptodactylidae) by the pyrethroid insecticide cypermethrin. Toxicological and environmental chemistry, 88(4), 729–737.

Campana, M. A., Panzeri, A. M., Moreno, V. J., & Dulout, F. N. (2003). Micronuclei induction in Rana catesbeiana tadpoles by the pyrethroid insecticide lambda-cyhalothrin. Genetics and Molecular Biology, 26, 99–103.

Campbell, K. S., Keller, P. G., Heinzel, L. M., Golovko, S. A., Seeger, D. R., Golovko, M. Y., & Kerby, J. L. (2022). Detection of imidacloprid and metabolites in Northern Leopard frog (Rana pipiens) brains. Science of the total environment, 813, 152424.

Cole, L. M., & Casida, J. E. (1983). Pyrethroid toxicology in the frog. Pesticide biochemistry and physiology, 20(2), 217–224.

Daggett, D. A., Oberley, T. D., Nelson, S. A., Wright, L. S., Kornguth, S. E., & Siegel, F. L. (1998). Effects of lead on rat kidney and liver: GST expression and oxidative stress. Toxicology, 128(3), 191–206.

De Arcaute, C. R., Pérez-Iglesias, J. M., Nikoloff, N., Natale, G. S., Soloneski, S., & Larramendy, M. L. (2014). Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecological indicators, 45, 632–639.

El-Garawani, I. M., Khallaf, E. A., Alne-Na-Ei, A. A., Elgendy, R. G., Mersal, G. A., & El-Seedi, H. R. (2021). The role of ascorbic acid combined exposure on imidacloprid-induced oxidative stress and genotoxicity in Nile tilapia. Scientific reports, 11(1), 14716.

Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570–574.

Fonseca Peña, S. V. D., Natale, G. S., & Brodeur, J. C. (2022). Toxicity of the neonicotinoid insecticides thiamethoxam and imidacloprid to tadpoles of three species of South American amphibians and effects of thiamethoxam on the metamorphosis of Rhinella arenarum. Journal of toxicology and environmental health. Part A, 85(24), 1019–1039.

Gasso, V., Nedzvetsky, V., Novitskyi, R., & Yermolenko, S. (2021). Λ-cyhalothrin causes oxidative stress accompanied by reduced glutathione alteration and modulation of regulatory protein p53 expression in the fish brain. Ecology and noospherology, 32(2), 71–76 (in Ukranian).

Gasso, V., Yermolenko, S., Bobyliov, Y., Hahut, A., Huslystyi, A., Hasso, I., & Petrushevskyi, V. (2020). Biomarkers of the influence of pyrethroids and neonicotinoids on amphibian larvae. Ecology and noospherology, 31(1), 46–51 (in Ukranian).

Gibbons, J. W., Winne, C. T., Scott, D. E., Willson, J. D., Glaudas, X., Andrews, K. M., Todd, B. D., Fedewa, L. A., Wilkinson, L., Tsaliagos, R. N., Harper, S. J., Greene, J. L., Tuberville, T. D., Metts, B. S., Dorcas, M. E., Nestor, J. P., Young, C. A., Akre, T., Reed, R. N., Buhlmann, K. A., Norman, J., Croshaw, D. A., Hagen, C., Rothermel, B. B. (2006). Remarkable amphibian biomass and abundance in an isolated wetland: implications for wetland conservation. Conservation biology: the journal of the society for conservation biology, 20(5), 1457–1465.

Giesy, J. P., Solomon, K. R., Mackay, D., & Anderson, J. (2014). Evaluation of evidence that the organophosphorus insecticide chlorpyrifos is a potential persistent organic pollutant (POP) or persistent, bioaccumulative, and toxic (PBT). Environmental sciences Europe, 26(1), 1–20.

Glaberman, S., Kiwiet, J., & Aubee, C. B. (2019). Evaluating the role of fish as surrogates for amphibians in pesticide ecological risk assessment. Chemosphere, 235, 952–958.

Goldspiel, H. B., Cohen, J. B., McGee, G. G., & Gibbs, J. P. (2019). Forest land-use history affects outcomes of habitat augmentation for amphibian conservation. Global ecology and conservation, 19, e00686.

Hoffmann, M., Hilton-Taylor, C., Angulo, A., Böhm, M., Brooks, T. M., Butchart, S. H., Carpenter, K. E., Chanson, J., Collen, B., Cox, N. A., Darwall, W. R., Dulvy, N. K., Harrison, L. R., Katariya, V., Pollock, C. M., Quader, S., Richman, N. I., Rodrigues, A. S., Tognelli, M. F., Vié, J. C., Aguiar, J. M., Allen, D. J., Allen, G. R., Amori, G., Ananjeva, N. B., Andreone F., Andrew, P., Ortiz A. L. A., Baillie, J. E. M., Baldi, R., Bell, B. D., Biju, S. D., Bird, J. P., Black-Decima, P., Blanc, J. J., Bolanos, F., Bolivar-G., W., Burfield, I. J., Burton, J. A., Capper, D. R., Castro, F., Catullo, G., Cavanagh, R. D., Channing, A., Chao, N. L., Chenery, A. M., Chiozza, F., Clausnitzer, V., Collar, N. J., Collett, L. C., Collette, B. B., Fernandez, C. F. C., Craig, M. T., Crosby, M. J., Cumberlidge, N., Cuttelod, A., Derocher, A. E., Diesmos, A. C., Donaldson, J. S., Duckworth, J. W., Dutson, G., Dutta, S. K., Emslie, R. H., Farjon, A., Fowler, S., Freyhof, J., Garshelis, D. L., Gerlach, J., Gower, D. J., Grant, T. D., Hammerson, G. A., Harris, R. B., Heaney, L. R., Hedges, S. B., Hero, J.-M., Hughes, B., Hussain, S. A., Icochea, M. J., Inger, R. F., Ishii, N., Iskandar, D. T., Jenkins, R. K. B., Kaneko, Y., Kottelat, M., Kovacs, K. M., Kuzmin, S.L., La Marca, E., Lamoreux, J. F., Lau, M. W. N., Lavilla, E. O., Leus, K., Lewison, R.L., Lichtenstein, G., Livingstone, S. R., Lukoschek, V., Mallon, D. P., McGowan, P. J. K., McIvor, A., Moehlman, P. D., Molur, S., Muñoz Alonso, A., Musick, J. A., Nowell, K., Nussbaum, R. A., Olech, W., Orlov, N. L., Papenfuss, T. J., Parra-Olea, G., Perrin, W. F., Polidoro, B. A., Pourkazemi, M, Racey, P. A., Ragle, J. S., Ram, M., Rathbun, G., Reynolds, R. P., Rhodin, A. G., Richards, S. J., Rodríguez, L. O., Ron, S. R., Rondinini, C., Rylands, A. B., Sadovy de Mitcheson, Y., Sanciangco, J. C., Sanders, K. L., SantosBarrera, G., Schipper, J., Self-Sullivan, C., Shi, Y., Shoemaker, A., Short, F. T., Sillero-Zubiri, C., Silvano, D. L., Smith, K. G., Smith, A. T., Snoeks, J., Stattersfield, A. J., Symes, A. J., Taber, A. B., Talukdar, B. K., Temple, H. J., Timmins, R., Tobias, J. A., Tsytsulina, K, Tweddle, D., Ubeda, C., Valenti, S. V., van Dijk, P. P., Veiga, L. M., Veloso, A., Wege, D. C., Wilkinson, M., Williamson, E. A., Xie, F., Young, B. E., Akçakaya, H. R., Bennun, L., Blackburn, T. M, Boitani, L., Dublin, H. T., da Fonseca, G. A., Gascon C, Lacher, T. E. Jnr, Mace, G. M., Mainka, S. A., McNeely. J. A., Mittermeier, R. A., Reid, G. M., Rodriguez J. P., Rosenberg, A. A., Samways, M. J., Smart, J., Stein, B. A., Stuart, S. N. (2010). The impact of conservation on the status of the world's vertebrates. Science, 330(6010), 1503–1509.

Houlahan, J. E., Findlay, C. S., Schmidt, B. R., Meyer, A. H., & Kuzmin, S. L. (2000). Quantitative evidence for global amphibian population declines. Nature, 404(6779), 752–755.

Huslystyi, A., Nedzvetsky, V., Yermolenko, S., Gasso, V., Petrushevskyi, V., & Sukharenko, E. (2021). Low doses of imidacloprid induce oxidative stress and neural cell disruption in earthworm Eisenia fetida. International letters of natural sciences, 84, 1–11.

Khan, M. Z., & Law, F. C. (2005). Adverse effects of pesticides and related chemicals on enzyme and hormone systems of fish, amphibians and reptiles: a review. Proceedings of the Pakistan Academy of Sciences, 42(4), 315–323.

Leeb, C., Brühl, C., & Theissinger, K. (2020). Potential pesticide exposure during the post-breeding migration of the common toad (Bufo bufo) in a vineyard dominated landscape. The Science of the total environment, 706, 134430.

Li, M., Lv, M., Liu, T., Du, G., & Wang, Q. (2022). Lipid Metabolic Disorder Induced by Pyrethroids in Nonalcoholic Fatty Liver Disease of Xenopus laevis. Environmental science & technology, 56(12), 8463–8474.

Li, M., Liu, T., Yang, T., Zhu, J., Zhou, Y., Wang, M., & Wang, Q. (2022). Gut microbiota dysbiosis involves in host non-alcoholic fatty liver disease upon pyrethroid pesticide exposure. Environmental science and ecotechnology, 11, 100185.

Li, M., Zhu, J., Wu, Q., & Wang, Q. (2021). The combined adverse effects of cis-bifenthrin and graphene oxide on lipid homeostasis in Xenopus laevis. Journal of hazardous materials, 407, 124876.

Loewy, R. M., Monza, L. B., Kirs, V. E., & Savini, M. C. (2011). Pesticide distribution in an agricultural environment in Argentina. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 46(8), 662–670.

Mahmood, I, Imadi, S. R, Shazadi, K., Gul, A., Hakeem, K. R. (2016) Effects of pesticides on environment. In: Hakeem, K., Akhtar, M., Abdullah, S. (eds) Plant, soil and microbes: volume 1: implications in crop science. Springer International Publishing, Cham, 253–269.

Mann, R. M., Hyne, R. V., Choung, C. B., & Wilson, S. P. (2009). Amphibians and agricultural chemicals: review of the risks in a complex environment. Environmental pollution (Barking, Essex: 1987), 157(11), 2903–2927.

Mohafrash, S. M. M., Hassan, E. E., El-Shaer, N. H., & Mossa, A. H. (2021). Detoxification gene expression, genotoxicity, and hepatorenal damage induced by subacute exposure to the new pyrethroid, imiprothrin, in rats. Environmental science and pollution research international.

Nazar, A., Iqbal, R., Rizwan, M., & Nazar, M. Z. (2021). Acute toxic effects on hematological and histological features in adult frogs, Rana tigrina exposed to lambda-cyhalothrin pesticide. Advances of nutrition science and technology, 1(1), 39–50.

Nedzvetsky, V., Gasso, V., Novitskiy, R., & Yermolenko, S. (2020). Influence of the insecticide λ-cyhalothrin on oxidative stress and expression of replicative protein A in the brain of fish. Agrology, 3(4), 214–218 (in Ukranian).

Osman, K. A., Ali, A., Ahmed, N. S., & Ayman, S. (2022). Biochemical and genotoxic effects of some pesticides on the Egyptian Toads, Sclerophrys regularis (Reuss, 1833). Watershed ecology and the environment, 4, 125–134.

Radovanović, T. B., Nasia, M., Krizmanić, I. I., Prokić, M. D., Gavrić, J. P., Despotović, S. G., Gavrilović, B. R., Borković-Mitić, S. S., Pavlović, S. Z., & Saičić, Z. S. (2017). Sublethal effects of the pyrethroid insecticide deltamethrin on oxidative stress parameters in green toad (Bufotes viridis L.). Environmental toxicology and chemistry, 36(10), 2814–2822.

Ramanathan, S., Kumar M, S., Sanjeevi, G., Narayanan, B., & Kurien, A. A. (2020). Thiamethoxam, a neonicotinoid poisoning causing acute kidney injury via a novel mechanism. Kidney international reports, 5(7), 1111–1113.

Rao, G. V., & Rao, K. S. (1995). Modulation in acetylcholinesterase of rat brain by pyrethroids in vivo and an in vitro kinetic study. Journal of neurochemistry, 65(5), 2259–2266.

Riaz, A., Majeed, M., Riaz, M. A., Iqbal, A., & Ashfaq, U. A. (2021). Histopathological alteration in organs of adult male frog after exposure to alpha-cypermethrin. Pure and applied biology (PAB), 11(1), 175–180.

Rives, C., Fougerat, A., Ellero-Simatos, S., Loiseau, N., Guillou, H., Gamet-Payrastre, L., & Wahli, W. (2020). Oxidative stress in NAFLD: role of nutrients and food contaminants. Biomolecules, 10(12), 1702.

Rodrigues, K. J., Santana, M. B., Do Nascimento, J. L., Picanço-Diniz, D. L., Maués, L. A., Santos, S. N., Ferreira, V. M., Alfonso, M., Durán, R., & Faro, L. R. (2010). Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats. Ecotoxicology and environmental safety, 73(1), 101–107.

Rudek, Z., & Rozek, M. (1992). Induction of micronuclei in tadpoles of Rana temporaria and Xenopus laevis by the pyrethroid Fastac 10 EC. Mutation research, 298(1), 25–29.

Saad, E. M., Elassy, N. M., & Salah-Eldein, A. M. (2022). Effect of induced sublethal intoxication with neonicotinoid insecticides on Egyptian toads (Sclerophrys regularis). Environmental science and pollution research international, 29(4), 5762–5770.

Samojeden, C. G., Pavan, F. A., Rutkoski, C. F., Folador, A., da Fré, S. P., Müller, C., Hartmann, P. A., & Hartmann, M. (2022). Toxicity and genotoxicity of imidacloprid in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Anura: Leptodactylidae). Scientific reports, 12(1), 11926.

Sharma, R., & Jindal, R. (2022). In vivo genotoxic effects of commercial grade cypermethrin on fish peripheral erythrocytes. Environmental and molecular mutagenesis, 63(4), 204–214.

Smith, T. M., & Stratton, G. W. (1986). Effects of synthetic pyrethroid insecticides on nontarget organisms. Residue reviews, 97, 93–120.

Tiryaki, O., & Temur, C. (2010). The fate of pesticide in the environment. Journal of biological & environmental sciences, 4(10), 29–38.

Ullah, S., Li, Z., Zuberi, A., Arifeen, M. Z. U., & Baig, M. M. F. A. (2019). Biomarkers of pyrethroid toxicity in fish. Environmental chemistry letters, 17(2), 945–973.

Yang, J. S., & Park, Y. (2018). Insecticide exposure and development of nonalcoholic fatty liver disease. Journal of agricultural and food chemistry, 66(39), 10132–10138.

Yang, J. S., Qi, W., Farias-Pereira, R., Choi, S., Clark, J. M., Kim, D., & Park, Y. (2019). Permethrin and ivermectin modulate lipid metabolism in steatosis-induced HepG2 hepatocyte. Food and chemical toxicology, 125, 595–604.

Yuan, L., Qi, S., Wu, X., Wu, C., Xing, X., & Gong, X. (2013). Spatial and temporal variations of organochlorine pesticides (OCPs) in water and sediments from Honghu Lake, China. Journal of geochemical exploration, 132, 181–187.

Zalom, F., Toscano, N., & Byrne, F. (2005). Managing resistance is critical to future use of pyrethroids and neonicotinoids. California agriculture, 59(1), 11–15.

Abstract views: 29
PDF Downloads: 18
How to Cite
Gasso, V., Yermolenko, S., Petrushevskyi, V., Valeskaln, A., & Petrov, I. (2022). Influence of pyrethroid and neonicotinoid insecticides on post-metamorphic amphibians (literature review). Ecology and Noospherology, 33(2), 80-85.