State-of-art and some ideas for future progress of bioassays with plants

  • O. I. Dzjuba M. M. Gryshko National Botanical Garden of the NAS of Ukraine
  • O. P. Taran National University of Life and Environmental Sciences of Ukraine
  • A. V. Viter M. M. Gryshko National Botanical Garden of the NAS of Ukraine
  • N. V. Zaimenko M. M. Gryshko National Botanical Garden of the NAS of Ukraine
Keywords: bioassays, stimulus, method, technique, identification, effect


Comparing with the trivial physical, physicochemical and chemical ways of the search of the agents of interest, the bioassays have the set of advantages, including the demand of less precision tools, less amounts of costs, labors and some other means. To date bioassays have formed the separate domain with its own theoretical basis, including classification, systematization, methodology, and meta-research. The present review analyzes the major spheres of the application of bioassays, such as environmental monitoring, quality control of foods. Bioassays contribute to the studies of the properties of plant metabolites, the peculiarities of the influence of various agents with potentials of toxicity, genotoxicity, neurotoxicity, mutagenicity, teratogenicity, endocrine disruption, etc. Bioassays not only enable the identification of stimuli by the specificity of structure (from atomic to supramolecular level), but also explore the stimuli functionally – in sense of the diversity of biological effects. This research approach is built on the indicators, which belong to the vast range of levels of living matter: from macromolecules to multi-cellular organisms. Great attention in this paper is paid to the parameters, detected in the process of bioassays, also to the methods and related instruments. We divide the methods into general physical, general chemical, general biologic and complex ones. The series of challenges to be researched in future are highlighted. They are: 1) elaboration of the investigatory option, which would be the same with the quantitative tests in chemistry; 2) the integration of the ideas of conventional bioassays with the ideas of bioindication and biolocation; 3) extension of the knowledge about correlation of distinct biological effects, induced by stimuli. Ultimately, bioassays are proved to be the actively developing domain of knowledge.


Agarwal, A., D'Souza, P., Johnson, T. S., Dethe, S. M., & Chandrasekaran, C. (2014). Use of in vitro bioassays for assessing botanicals. Current Opinion in Biotechnology, 25, 39–44.

Alden, C. L., Lynn, A., Bourdeau, A., Morton, D., Sistare, F. D., Kadambi, V. J., & Silverman, L. (2011). A critical review of the effectiveness of rodent pharmaceutical carcinogenesis testing in predicting for human risk. Veterinary Pathology, 48(3), 772–784.

Alépée, N., Bahinski, A., Daneshian, M., De Wever, B., Fritsche, E., Goldberg, A., Hansmann, J., Hartung, T., Haycock, J., Hogberg, H., Hoelting, L., Kelm, J. M., Kadereit, S., McVey, E., Landsiedel, R., Leist, M., Lübberstedt, M., Noor, F., Pellevoisin, C., Petersohn, D., Pfannenbecker, U., Reisinger, K., Ramirez, T., Rothen-Rutishauser, B., Schäfer-Korting, M., Zeilinger, K., & Zurich, M. G. (2014). State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX, 31(4), 41–77.

Anaya, A. L., Macías-Rubalcava, M., Cruz-Ortega, R., Garcia-Santana, C., Sánchez-Monterrubio, P. N., Hernández-Bautista, B. E., & Mata R. (2005). Allelochemicals from Stauranthus perforatus, a Rutaceous tree of the Yucatan Peninsula, Mexico. Phytochemistry, 66(4), 487–494.

Bataineh, S. M., Saadoun, I., Hameed, K. M., & Ababneh, Q. (2008). Screening for soil streptomycetes from North Jordan that can produce herbicidal compounds. Polish Journal of Microbiology, 57, 297–305.

Bedernichek, T. Y., Zaimenko, N. V., Ivannikov, R. V. Loya, V. V., Anishchenko, V. M., Partyka, T. V., & Khoyetskyy, P. B. (2017). Content of low-molecular-weight organic compounds in soils under Deshampsia antarctica and D. cespitosa (Poaceae). Ukrainian Antarctic Journal, 16, 123–128 (in Russian).

Biddington, N. L. ,& Thomas, T. H. (1973). A modified Amaranthus betacyanin bioassay for the rapid determination of cytokinins in plant extracts. Planta, 111(2), 183–186.

Bonnet, J.-L., Bonnemoy, F., Dusser, M., & Bohatier, J. (2007). Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environmental Toxicology, 22(1), 78–91.

Brückner, D. J., Lepossa, A., & Herpai Z. (2003). Inhibitory effect of ragweed (Ambrosia artemisiifolia L.)-inflorescence extract on the germination of Amaranthus hypochondriacus L. and growth of two soil algae. Chemosphere, 51, 515–519.

Bürkholder, J. M., Marshall, H. G., Glasgow, H. B., Seaborn, D. W., & Deamer-Melia, N. J. (2001). The standardized fish bioassay procedure for detecting and culturing actively toxic Pfiesteria, used by two reference laboratories for atlantic and gulf coast states. Environmental Health Perspectives, 109(Supplement 5), 745–756.

Calabrese, E. J., & Baldwin, L. A. (2000). Radiation hormesis: its historical foundations as a biological hypothesis. Human and Experimental Toxicology, 19(1), 41–75.

Chapman, E. E., Dave, G., & Murimboh, J. D. (2013). A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils. Environmental Pollution (Barking), 179, 326–342.

Chung, I. M., Hahn, S. J., & Ahmad, A. (2005). Confirmation of potential herbicidal agents in hulls of rice, Oryza sativa. Journal of Chemical Ecology, 31, 1339–1352.

Cohen, P. A., Travis, J. C., Keizers, P. H. J., Boyer, F. E., & Venhius, B. J. (2019). The stimulant higenamine in weight loss and sports supplements. Clinical Toxicology, 57(2), 125–130.

Cooper, E. R., McGrath, K. C., & Heather, A. K. (2013). In vitro androgen bioassays as a detection method for designer androgens. Sensors (Basel), 13(2), 2148–2163.

Crofts T. S., Men Y., Alvarez-Cohen L., & Taga M. E. (2014). A bioassay for the detection of benzimidazoles reveals their presence in a range of environmental samples. Frontiers in Microbiology, 5, Article 592.

Didukh, Y. P. (2012). Fundamentals of Bioindication. Kyiv: Naukova dumka Publ. (in Ukrainian).

Dolezal, K., Popa, I., Krystof, V. Spíchal, L., Fojtíková, M., Holub, J., Lenobel, R., Schmülling, T., & Strnad, M. (2006). Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorganic and Medicinal Chemistry, 14, 875–884.

Du Gas L. M., Ross P. S., Walker J. Marlatt V. L., Kennedy C. J. (2017). Effects of atrazine and chlorothalonil on the reproductive success, development, and growth of early life stage sockeye salmon (Oncorhynchus nerka). Environmental Toxicology and Chemistry, 36(5), 1354–1364.

Elliott, D. C. (1979). Analysis of variability in the Amaranthus bioassay for cytokinins: Effects of water Stress on benzyladenine- and fusicoccin-dependent responses. Plant Physiology, 63, 269–273.

Esimbekova, E., Kratasyuk, V., & Shimomura, O. (2014). Application of enzyme bioluminescence in ecology. Advances in Biochemical Engineering/Biotechnology, 144, 67–109.

Fleming, L. E., Kirkpatrick, B., Backer, L. C., Bean, J. A., Wanner, A., Reich, A., Zaias, J., Cheng, Y. S., Pierce, R., Naar, J., Abraham, W. M., & Baden, D. G. (2017). Aerosolized red tide toxins (brevetoxins) and asthma. Chest, 131, 187–194.

Ghribi, R., Correia, A.T., Elleuch, B., & Nunes, B. (2019). Testing the impact of contaminated sediments from the southeast marine coast of Tunisia on biota: a multibiomarker approach using the flatfish Solea senegalensis. Environmental Science and Pollution Research International, 29, 29704–29721.

Giles, K., Woerman, A. L., Berry, D. B., & Prusiner S. B. (2017). Bioassays and inactivation of prions. Cold Spring Harbor Perspectives in Biology , 8(8), Article a023499.

Gorelov, A. M. (2007). Biolocation and Its Use in Studies of Plants. Kyiv, Fitosociotsentr Publ. (in Russian).

Grodzynskyy, A. M. (1973). Fundamentals of Chemical Interaction of Plants. Kyiv, Naukova dumka Publ. (in Ukrainian).

Grodzynskyy, A. M., Golovko, E. A., Horobets, S. A, Kostroma, Y. Y., Krupa, L. I., Prutenskaya, N. I., Serdyuk, L. S., Yurchak, L. D., & Shrol T. S. (1987). Experimental Allelopathy. Kyiv, Naukova dumka Publ. (in Russian).

Hassan, S. H., Van Ginkel, S. W., Hussein, M. A., Abskharon, R., & Oh S. E. (2016). Toxicity assessment using different bioassays and microbial biosensors. Environment International, 92-93, 106–118.

Hong, Y., Yang, X., Yan, G., Huang, Y., Zuo, F., Shen, Y., Ding, Y., & Cheng, Y. (2017). Effects of glyphosate on immune responses and haemocyte DNA damage of Chinese mitten crab, Eriocheir sinensis. Fish and Shellfish Immunology, 71, 19–27.

Iqbal, M. (2016). Vicia faba bioassay for environmental toxicity monitoring: A review. Chemosphere, 144, 785–802.

Ito, N., Hasegawa, R., Imaida, K., Hirose, M., & Shirai, T. (1996). Medium-term liver and multi-organ carcinogenesis bioassays for carcinogens and chemopreventive agents. Experimental and Toxicologic Pathology, 48(2-3), 113–119.

Ivashkin, V. T., Minasyan, G. A., & Ugolev, A. M. (1990). Theory of Functional Blocks and Problems of Clinical Medicine. Leningrad, Nauka Publ. (in Russian).

Jirova, G., Wittlingerova, Z., Zimova, M., Vlkova, A.,Wittlerova, M., Dvorakova, M., & Jirova, D. (2016). Bioindicators of wastewater ecotoxicity. Neuroendocrinology Letters, 37(Supplement1), 17–24.

Khan, S., Anas, M., & Malik A. (2019). Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicology Reports, 6, 193–201.

Kinsman, L. T., Pinfield, N. J., & Stobart, A. K. (1975). A gibberellin bioassay based on betacyanin production in Amaranthus caudatus seedlings. Planta, 127(2) 149–152.

Kojima, H., Takeuchi, S., Iida, M., Nakayama, S. F., & Shiozaki, T. (2018) A sensitive, rapid, and simple DR-EcoScreen bioassay for the determination of PCDD/Fs and dioxin-like PCBs in environmental and food samples. Environmental Science and Pollution Research International, 25(8), 7101–7112.

Kutsokon N. K. (2010). Vegetable test-systems for genotoxicity detection. Visnyk of the National Academy of Sciences of Ukraine (4), 48–52 (in Ukrainian).

Lakhansky, T., & Hendrickx, B. (1981). Tetrahymena pyriformis GL: a test system with multiple possibilities in the screening of genotoxic substances. Archives Belges de Medecine Sociale, Hygiene, Medecine du Travail et Medecine Legale, 39, 40–54 (in French).

Leusch, F. D., Neale, P. A., Hebert, A., Scheurer, M., & Schriks, M. C. (2017). Analysis of the sensitivity of in vitro bioassays for androgenic, progestagenic, glucocorticoid, thyroid and estrogenic activity: Suitability for drinking and environmental waters. Environment International, 99, 120–130.

Małuszyńska, J. & Juchimiuk, J. (2005). Plant genotoxicity: a molecular cytogenetic approach in plant bioassays. Arhiv za higijenu rada i toksikologiju, 56, 2, 177–184.

Manachini, B., Casati, P., Cinanni, L., & Bianco, P. (2007). Role of Myzus persicae (Hemiptera: Aphididae) and its secondary hosts in plum pox virus propagation. Journal of Economic Entomology, 100, 1047–1052.

Mao, B., Gao, M., Chen, C., Li, Z., Zhang, H. Y., & Zhang, Q. (2018). Design, synthesis and biological evaluation of novel N-nitrophenyl derivatives based on the structure of acetohydroxyacid synthase. Pesticide Biochemistry and Physiology, 145, 100–107.

Mashjoor, S, Yousefzadi, M., Zolgharnain, H., Kamrani E., & Alishahi, M. (2018). Organic and inorganic nano-Fe3O4: Alga Ulva flexuosa-based synthesis, antimicrobial effects and acute toxicity to briny water rotifer Brachionus rotundiformis. Environmental Pollution, 237, 50–64.

Monselise, E. B., Levkovitz, A., Gottlieb, H. E., & Kost, D. (2011). Bioassay for assessing cell stress in the vicinity of radio-frequency irradiating antennas. Journal of Environmental Monitoring, 13, 1890–1896.

Moroz, P.°A. (1990). Allelopathy in Orchards. Kyiv, Naukova dumka Publ. (in Russian).

Mudryĭ, I. V., & Debrivnaia, I. E. (1996). The importance of using biological test objects in studying the toxicity of surface-active substances. Likars'ka Sprava, 3–4, 150–152 (in Russian).

Nishi, K., Isobe, S., Zhu, Y., & Kiyama, R. (2015). Fluorescence-based bioassays for the detection and evaluation of food materials. Sensors (Basel), 15(10), 25831–25867.

Osimitz, T. G., Droege, W., Boobis, A. R., & Lake, B. G. (2013). Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans. Food and Chemical Toxicology, 60, 550–562.

Pooam, M., Arthaut, L. D., Burdick, D., Link, J., Martino, C. F., & Ahmad, M. (2019). Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta, 249, 319–332.

Prinsloo, G., Papadi, G., Hiben, M.G., de Haan, L., Louisse, J., Beekmann, K., Vervoort, J., & Rietjens I. M. C. M. (2017). In vitro bioassays to evaluate beneficial and adverse health effects of botanicals: promises and pitfalls. Drug Discovery Today, 22(8), 1187–1200.

Saha, G. M. (2002). Design and analysis for bioassays In Design Workshop Lecture Notes (pp. 61-76). Koltaka: Indian Statistical Institute.

Sauvant, M. P., Pepin, D., Bohatier, J., & Groliere C. A. (1995). Microplate technique for screening and assessing cytotoxicity of xenobiotics with Tetrahymena pyriformis. Ecotoxicology and Environmental Safety, 32(2), 159–165.

Sciuto, S., Chillemi, R., Piattelli, M., & Puglisi, G. (1981). Gibberellin- and cytokinin-like activities in marine algae from central Mediterranean. Bollettino della Societa Italiana Biologia Sperimentale, 15, 1590–1595.

Scott, A. P. (2013). Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects. Steroids, 78(2), 268–281.

 Serdyuk, O. P., Smolygina, L. D., Muzafarov, E. N., Adanin, V. M., & Arinbasarov, M. U. (1995). 4-Hydroxyphenethyl alcohol – a new cytokinin-like substance from the phototrophic purple bacterium Rhodospirillum rubrum 1R. FEBS Letters, 365, 10–12.

Sotnikov, D. V., Zherdev, A. V., & Dzantiev, B. B. (2017). Mathematical modeling of bioassays. Biochemistry (Moscow), 82(13), 1744–1766.

Starodub N. F, & Taran M. V. (2016). Analysis of the efficiency of fiber optic SOS-type biosensor work at the different ways of the sensitive layer formation. Austin Journal of Biosensors and Bioelectronics, 2(2), 1022.

Starodub, N. F., Fedelesh-Morenetz, M. I., & Savchuk, M. V. (2018a). Control of the genotoxicity of certain mycotoxins by a fiber optical SOS-type biosensors. World Journal of Engineering Research and Technology, 4(6), 199–205.

Starodub, N. F, Savchuk, M. V, Székács, A, & Marty, J.-L. (2018b). Peculiarities of sample preparation for the determination of certain mycotoxins in grain products and fruits by immunobiosensor analysis. World Journal of Engineering Research and Technology, 4(3), 174–185.

Sun, C., Zhang, G., Zheng, H., Liu, N., Shi, M., Luo, X., Chen, L., Li, F., & Hu, S. (2019). Fate of four phthalate esters with presence of Karenia brevis: Uptake and biodegradation. Aquatic Toxicology, 206, 81–90.

Tian, H., Sun, Y., Wang, H., Bing, X., Wang, W., & Ru, S. (2017). Monocrotophos pesticide affects synthesis and conversion of sex steroids through multiple targets in male goldfish (Carassius auratus). Scientific Reports, 7(1), Article 2306.

Tu, J., & Bennett, P. (2019). Parallelism experiments to evaluate matrix effects, selectivity and sensitivity in ligand-binding assay method development: pros and cons. Bioanalysis, 9(14), 1107–1122.

Turkeltaub P. C. (1989). Biological standardization of allergenic extracts. Allergologia et Immunopathologia, 17(2), 53–65.

Ugolev, A. M. (1985). Evolution of Digestion and Principles of Evolution of Functions: The Elements of Modern Functionalism. Leningrad, Nauka Publ. (in Russian).

Valencia-Islas, N., Abbas, H., Bye, R., Toscano, R., & Mata, R. (2002). Phytotoxic compounds from Prionosciadium watsoni. Journal of Natural Products, 65, 828–834.

Vlasov, V. P., Mazin, V. V., Turetskaya, R. H., Gus'kov, A. V., Komizerko, E. I., Lozhnikova, V. N., Yanina, L. I., Koff, E. M., Konopskaya, L. N., Sharikov, G. D., Filonova, V. P., Kefeli V. I. (1979). A complex method for determining of natural growth regulators. Primary analysis of corn immature seeds for activity of free auxins, gibberelins and cytokinins. Fiziologiya Rasteniy = Journal of Plant Physiology (Moscow), 26(3), 648–655 (in Russian).

Walters, F. S., Graser, G., Burns, A., & Raybould, A. (2018). When the whole is not greater than the sum of the parts: A critical review of laboratory bioassay effects testing for insecticidal protein interactions. Environmental Entomology, 47(2), 484–497.

Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., Zhou, Z., Han, L., Karapetyan, K., Dracheva, S., Shoemaker, B. A., Bolton, E., Gindulyte, A., & Bryant, S. H. (2012). PubChem's BioAssay database. Nucleic Acids Research, 40, D400–D412.

Weiss, S. C., Egetenmeyer, N., & Schulz, W. (2017). Coupling of in vitro bioassays with planar chromatography in effect-directed analysis. Advances in Biochemical Engineering/Biotechnology, 157, 187–224.

Wen, Z., Yan, H., Shi, M., Chen B., & Zhang, T. (2018). Inhibitory effect of the lactic acid leaching solution of Allium cepa L. on Microcystis aeruginosa. Wei sheng yan jiu = Journal of Hygiene Research, 47, 822–832 (in Chinese).

Wieczerzak, M., Namieśnik, J., & Kudłak, B. (2016). Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review. Environment International, 94, 341–361.

Wijeyaratne, W. M. D. N, & Wadasinghe, L. G. Y. J. G. (2019). Allium cepa bio assay to assess the water and sediment cytogenotoxicity in a tropical stream subjected to multiple point and nonpoint source pollutants. Journal of Toxicology, Article N 5420124.

Xu, T., Close, D., Smartt, A., Ripp, S., & Sayler, G. (2014). Detection of organic compounds with whole-cell bioluminescent bioassays. Advances in Biochemical Engineering/Biotechnology, 144, 111–151.

Yurchak, L. D. (2006). Allelopathy: Retrospective outlook, present state and perspectives of investigations. Introduction of Plants, (4), 12–23 (in Ukrainian).

Zahajská, L., Nisler, J., Voller, J., Gucký, T., Pospíšil, T., Spíchal, L., & Strnad, M. (2017). Preparation, characterization and biological activity of C8-substituted cytokinins. Phytochemistry, 135, 115–127.

Zhang, X., Liu, W., Wang, J., Tian, H., Wang, W., & Ru, S. (2018). Quantitative analysis of in-vivo responses of reproductive and thyroid endpoints in male goldfish exposed to monocrotophos pesticide. Comparative Biochemistry and Physiology. Part C: Toxicology and Pharmacology, 211, 41–47.

Zhou, B., Wang, H., Meng, B., Wei, R, Wang, L., An, C., Chen, S., Yang, C., & Qiang S. (2019). An evaluation of tenuazonic acid, a potential biobased herbicide in cotton. Pest Management Science, 75, 2482–2489.

Zubrod, J.P., Bundschuh, R., Englert, D., Rohrberg, M., Wieczorek, M.V., Bakanov, N., Schulz, R., & Bundschuh, M. Transient effects following peak exposures towards pesticides – An explanation for the unresponsiveness of in situ measured functional variables. Environmental Pollution, 231, 1393–1397.

Abstract views: 92
PDF Downloads: 70
How to Cite
Dzjuba, O., Taran, O., Viter, A., & Zaimenko, N. (2020). State-of-art and some ideas for future progress of bioassays with plants. Ecology and Noospherology, 31(2), 70-76.