Spectral parameters of Robinia pseudoacacia L. seeds in technogenic conditions of urban environment

  • V. S. Fedenko Oles Honchar Dnipro National University, Dnipro, Ukraine
Keywords: Robinia pseudoacacia L., seed, reflectance spectra, colorimetry, fluorescence, technogenic contamination


Robinia pseudoacacia L. (black locust) is an invasive species with high activity in alien flora of Ukraine. Invasive potential of plants in unfavorable ecological conditions is due to the presence of adaptive mechanisms. One of the criteria for the invasive potential of foreign plants is considered to be seed productivity. For plants of black locust note a high level of seed productivity. However, it remains to be seen what factors ensure the formation of viable seeds in extreme environments. Among the factors that ensure the formation of viable plant seeds, note the barrier function of the seed coat relative to biotic and abiotic environmental factors. The physiological role of this protective barrier is realized due to the specific properties and component composition of the surface tissues of seeds. Among the metabolites with protective properties localized in the seed coat, consider proanthocyanidins (condensed tannins), which are formed during the biosynthesis of phenolic compounds. To objectively assess changes in the accumulation of proanthocyanidins in the seed coat, it is necessary to use non-destructive methods, because the isolation of these compounds destroys their native polymer structure. The influence of technogenic pollution of Dnipro city on the reflectance, colorimetric and fluorescent characteristics of Robinia pseudoacacia L. seeds is investigated in the work. Mature seeds of black locust were collected at monitoring sites in the Botanical Garden of Oles Honchar Dnipro National University (ecologically favorable zone) and at some points of linear roadside plantations of one of the main highways. It was found that the chronic effect of aerogenic pollutants on black locust plants caused an increased accumulation of proanthocyanidins in the seed coat, which may be due to changes in the biosynthesis of these compounds at the stage of oxidative polymerization of flavonoid subunits. Markers of this reaction of plants are the change of position and increase of intensity of maxima in the reflectance spectra of visible region, increase of value of dominant wavelength, decrease of conditional purity of color tone and colorimetric coefficients, increase of intensity of maxima in seed fluorescence spectra. The protective effect of these adaptive changes is associated with the strengthening of the barrier function of the seed coat to adverse environmental factors to maintain the viability of the seeds under the negative impact of technogenic pollution.


Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., Valero, J. R. (2011). Extraction and   analysis of polyphenol: recent trends. Critical Rev. Biotechnol., 31(3), 227–249.

Barboza da Silva, C., Oliveira, N. M., de Carvalho, M. E. A., de Medeiros, A. D., de Lima Nogueira, M., Dos Reis, A. R. (2021). Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality. Scientific reports, 11(1), 1–12.

Barrett, S. C., Colautti, R. I., Eckert, C. G. (2008). Plant reproductive systems and evolution during biological invasion. Mol. Ecol., 17(1), 373–383.

Bostyn, S., Destandau, E., Charpentier, J. P., Serrano, V., Seigneuret, J. M., Breton, C. (2018). Optimization and kinetic modelling of robinetin and dihydrorobinetin extraction from Robinia pseudoacacia wood. Ind. Crops  Prod., 126, 22–30.

Bouteiller, X. P., Moret, F., Ségura, R., Klisz, M., Martinik, A., Monty, A., Pino, J., van Loo, M., Wojda, T.,  Porté, A. J., Mariette, S. (2021). The seeds of invasion: enhanced germination in invasive European populations of black locust (Robinia pseudoacacia L.) compared to native American populations. Plant Biol., 23 (6), 1006–1017.

Chukwumah, Y., Walker, L. T., Verghese, M. (2009). Peanut skin color: a biomarker for total polyphenolic content and antioxidative capacities of peanut cultivars. Int. J. Mol. Sci., 10, 4941–4952.

Destandau, E., Charpentier, J. P., Bostyn, S., Zubrzycki, S., Serrano, V., Seigneuret, J. M., Breton, C. (2016). Gram-scale purification of dihydrorobinetin from Robinia pseudoacacia L. wood by centrifugal partition chromatography. Separations, 3(3), 23.

Dixon, R. A., Sarnala, S. (2020). Proanthocyanidin biosynthesis – A matter of protection. Plant physiol., 184(2), 579–591.

Dixon, R. A., Xie, D.-Y., Sharma, S. B. (2005). Proanthocyanidins – a final frontier in flavonoid research? New Phytol., 165, 9–28.

Donaldson, L. (2020). Autofluorescence in plants. Molecules, 25(10), 2393.

Elessawy, F. M., Vandenberg, A., El-Aneed, A., Purves, R. W. (2021). An untargeted metabolomics approach for correlating pulse crop seed coat polyphenol profiles with antioxidant capacity and iron chelation ability. Molecules, 26(13), 3833.

Fedenko, V. S. (2008). Tsianidyn yak endohennyy khelator ioniv metaliv u korenyakh prorostkiv kukurudzy [Cyanidin as endogenous chelator of metal ions in maize seedling roots]. Ukrainskyi Biokhimichnyi Zhurnal, 80(1), 102–106 (in Ukrainian).

Fedenko, V. S., Landi, M.,  Shemet, S. A. (2017). Detection of nickel in maize roots: A novel nondestructive approach by reflectance spectroscopy and colorimetric models. Ecological indicators, 82, 463–469.

Fedenko, V. S., Shemet, S. A., Guidi, L., Landi, M. (2020). Metal/metalloid-induced accumulation of phenolic accumulation in plants. In: M. Landi, S. A. Shemet, V. S. Fedenko (eds.). Metal toxicity in higher plants. Nova Science Publishers, 67–115.

Fedenko, V. S., Struzhko, V. S. (1996). Soderzhaniye fenol'nykh soyedineniy zlakovykh kul'tur v usloviyakh antropogennoy radionuklidnoy anomalii [Content of phenol compounds of cereals under anthropogenic radionuclide anomaly]. Fiziologiya i Biokhimiya Kul'turnykh Rastenij, 28(4), 273–281 (in Russian).

Gorban, V. A., Huslystyi, A. O. (2018). Deyaki osoblyvosti vplyvu nasadzhenʹ Robinia pseudoacacia L. na grunty v posushlyvykh umovakh [Some features of the influence of Robinia pseudoacacia L. on soils in arid conditions]. Ecology and Noospherology, 29(1), 47–51 (in Ukrainian).

Gratani, L., Vasheka, O., Bigaran, F. (2021). Metal accumulation capability by Platanus acerifolia (Aiton) Willd., Ailantus altissima (Mill.) Swingle, Robinia pseudoacacia L. and Quercus ilex L., largely distributed in the city of Rome. Am. J. Plant Sci., 12(01), 163.

Karmyzova, L., Baranovsky, B. (2020). Flora of the Dnipro city. Publishing House “Baltija Publishing”. 120 p.

Kim, N. S., Sathasivam, R., Chun, S. W., Youn, W. B., Park, S. U., Park, B. B. (2020). Biosynthesis of phenylpropanoids and their protective effect against heavy metals in nitrogen-fixing black locust (Robinia pseudoacacia). Trop. J. Pharm. Res., 19(5), 1065–1072.

Kranner, I., Minibayeva, F. V., Beckett, R. P., Seal, C. E. (2010). What is stress? Concepts, definitions and applications in seed science. New Phytol., 188, 655–673.

Lazzaro, L., Mazza, G., d'Errico, G., Fabiani, A., Giuliani, C., Inghilesi, A. F., Lagomarsino, A., Landi, S., Lastrucci, L., Pastorelli, R., Roversi, P. F., Torrini, G., Tricarico, E., Foggi, B. (2018). How ecosystems change following invasion by Robinia pseudoacacia: Insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities. Sci. Total Environ., 622–623, 1509–1518.

Lepiniec, L., Debeaujon, I., Routaboul, J.-M., Baudry, A., Pourcel, L., Nesi, N., Caboche, M. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol., 57, 405–430.

Likhanov, A. F., Bilous, S. Yu., BorodaiV. V. (2019). Antymikrobna aktyvnistʹ vtorynnykh metabolitiv perykarpiyiv deyakykh vydiv derevnykh roslyn [Antimicrobial activity of pericarp secondary metabolites of some species of woody plants]. Lisove i sadovo-parkove hospodarstvo, 15, 1–13 (in Ukrainian).

Moise, J. A., Han, S., Gudynaite-Savitch, L., Johnson, D. A., Miki, B. L. A. (2005). Seed coats: structure, development, composition and biotechnology. In Vitro Cell. Dev. Biol. – Plant, 41, 620–644.

Nicolescu, V. N., Rédei, K., Mason, W. L., Vor, T., Pöetzelsberger, E., Bastien, J. C., Brus, R.,  Benčať, T., Đodan, M., Cvjetkovic, B., Andrašev, S., La Porta, N., Lavnyy, V.,  Mandžukovski, D., Petkova, K., Roženbergar, D., Wąsik, R., Mohren, G. M. J., Monteverdi, M. C., Musch, B.,  Klisz, M., Perić, S., Keça, L., Bartlett, D., Hernea, C., Pástor, M. (2020). Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res., 31(4), 1081–1101.

Pang, L., Wang, J., Men, S., Yan, L., Xiao, J. (2021). Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis. Spectrochim. Acta  A: Mol. Biomol. Spectrosc., 245, 118888.

Ponomaryova, O. A. (2018). Bioriznomanittya ta zhytyevyy stan liniynykh pryshlyakhovykh nasadzhenʹ m. Dnipro (na prykladi prospektu im. B. Khmelʹnytsʹkoho) [Biodiversity and living conditions of linear roadside plantations of Dnipro (on the example of B. Avenue Khmelnytsky].  Nauka. Molodʹ. Ekolohiya-2018: za materialamy KHIV-yi Vseukrayinsʹkoyi naukovo-praktychnoyi konferentsiyi studentiv, aspirantiv ta molodykh vchenykh (m. Zhytomyr, 17 travnya 2018 roku). Zhytomyr, ZHNAU, 179–183 (in Ukrainian).

Protopopova, V. V., Shevera,  M. V. (2019). Invaziyni vydy u flori Ukrayiny. I. Hrupa vysoko aktyvnykh vydiv [Invasive species in the flora of Ukraine. I. The group of highly active species]. Geo & Bio, 17, 116–135 (in Ukrainian).

Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft, L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A., Pergl, J., Roy, H. E., Seebens, H., van Kleunen, M., Vilà, M., Wingfield, M. J., Richardson, D. M. (2020). Scientists' warning on invasive alien species. Biol. Rev., 95(6), 1511–1534.

Sanz, M., Fernandez de Simon, B., Esteruelas, E., Munoz, A. M., Cadahía, E., Hernandez, T., Estrella, I.,  Pinto, E. (2011). Effect of toasting intensity at cooperage on phenolic compounds in acacia (Robinia pseudoacacia) heartwood. J. Agric. Food Chem., 59(7), 3135–3145.

Smykal, P., Vernoud, V., Blair, M. W., Soukup, A., Thompson, R. D. (2014). The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci., 5, 119.

Tigabu, M., Oden, P.C., Lindgren, D. (2005). Identification of seed sources and parents of Pinus sylvestris L. using visible-near infrared reflectance spectra and multivariate analysis. Trees, 19, 468–476.

Troshchynska, Y., Bleha, R., Kumbarová, L., Sluková, M., Sinica, A., Štětina, J. (2019). Discrimination of flax cultivars based on visible diffusion reflectance spectra and colour parameters of whole seeds. Czech J. Food Sci., 37(3), 199–204.

Wilkaniec, A., Borowiak-Sobkowiak, B., Irzykowska, L., Breś, W., Świerk, D., Pardela, Ł.,  Durak, R., Środulska-Wielgus, J., Wielgus, K. (2021). Biotic and abiotic factors causing the collapse of Robinia pseudoacacia L. veteran trees in urban environments. PLoS ONE, 16(1), e0245398.

Zavialova, L. (2019). Ohlyad metodiv doslidzhennya adventyvnykh roslyn [A review of methods of investigation of alien plant species]. Geo & Bio, 18, 64–76 (in Ukrainian).

Zhang, C., Jia, X., Zhao, Y., Wang, L., Cao, K., Zhang, N., Gao, Y., Wang, Z. (2021). The combined effects of elevated atmospheric CO2 and cadmium exposure on flavonoids in the leaves of Robinia pseudoacacia L. seedlings. Ecotoxicol. Environ. Saf., 210, 111878.

Zhao, Y. H., Jia, X., Wang, W. K., Liu, T., Huang, S. P., Yang, M. Y. (2016). Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd-and Pb-contaminated soils. Sci. Total Environ., 565, 586–594.

Abstract views: 60
PDF Downloads: 39
How to Cite
Fedenko, V. (2021). Spectral parameters of Robinia pseudoacacia L. seeds in technogenic conditions of urban environment. Ecology and Noospherology, 32(1), 35-40. https://doi.org/https://doi.org/10.15421/032106