Characteristics of the toxic effect of imidacloprid on the state of Eisenia fetida (Annelida, Clitellata, Lumbricidae)

  • A. O. Huslystyi Oles Honchar Dnipro National University, Dnipro, Ukraine
  • V. Y. Gasso Oles Honchar Dnipro National University, Dnipro, Ukraine
  • S. V. Yermolenko Oles Honchar Dnipro National University, Dnipro, Ukraine
  • V. B. Petrushevskyi Oles Honchar Dnipro National University, Dnipro, Ukraine
Keywords: earthworm, neonicotinoid, insecticide, toxicity, morphological abnormalities, biochemical changes

Abstract

Imidacloprid became the most sold neonicotinoid insecticide in the world in the 21st century. Due to their constant use, neonicotinoids are stored in soils, bottom deposits, and surface waters. It is known that neonicotinoids reveal toxicity for non-target species: annelid worms, insects, fish, birds, and mammals. Neonicotinoids exhibit reproductive toxicity, neuro-, hepato-, and genotoxicity for mammals. Earthworms are useful modeling organisms that are proposed to carry out toxicity tests. Eisenia fetida is considered a convenient and adequate species in toxicological studies. Analysis of available data shows that even low concentrations of imidacloprid caused protrusion of a belt, blackening, leakage of a cellar fluid, narrowing areas of the body with edema in segments, and dark body pigmentation in E. fetida. There are also biochemical changes. Low concentrations of imidacloprid (<0.2 mg/L) suppress the activity of cellulase. Imidacloprid also causes damage to DNA, production of reactive oxygen species, and alterations in antioxidant enzymes activity in E. fetida: inhibition of catalase, but activation of superoxide dismutase and glutathione-S-transferase. Imidacloprid reduces reproductive success in E. fetida, causing significant deformation of sperm, reducing the average number and size of cocoons and the success of birth. At concentrations ≥10 mg/kg of imidacloprid, the high mortality of worms makes it impossible for vermiculture. At 5 mg/kg of imidacloprid in plants remains for vermicomposting in seven weeks, the mortality rate of 25% of E. fetida individuals is fixed. The stereotypical escape reflex behavior in the worms was observed in relation to imidacloprid at a concentration of 1.32 mg/kg. At the same time, molecular and cellular mechanisms of toxic effects of imidacloprid on E. fetida are almost not studied and needed special attention with further research.

References

Atwood, L. W., Mortensen, D. A., Koide, R. T., Smith, R. G. (2018). Evidence for multitrophic effects of pesticide seed treatments on non-targeted soil fauna. Soil Biology and Biochemistry, 125, 144e155.



Bandeira, F. O., Alves, P. R. L., Hennig, T. B., Schiehl, A., Cardoso, E. J. B. N., Baretta, D. (2020). Toxicity of imidacloprid to the earthworm Eisenia andrei and collembolan Folsomia candida in three contrasting tropical soils. Journal of Soils and Sediments, 20, 1997e2007.



Benítez, E., Nogales, R., Elvira, C., Masciandaro, G., Ceccanti, B. (1999). Enzyme and earthworm activities during vermicomposting of carbaryl-treated sewage sludge. Journal of Environmental Quality, 28, 10991104.



Bonmatin, J. M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., Long, E., Marzaro, M., Mitchell, E. A. D, Noome, D. A., Simon-Delso, N., Tapparo, A. (2015). Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research, 22, 35–67.



Bonmatin, J. M., Moineau, I., Charvet, R., Colin, M. E., Fleche, C., Bengsch, E. R. (2005). Behaviour of imidacloprid in fields. Toxicity for honey bees. In: E. Lichtfouse, J. Schwarzbauer, D. Robert (eds) Environmental Chemistry: Green Chemistry and Pollutants in Ecosystems. Springer, 483–494.



Botías, C., David, A., Horwood, J., Abdul-Sada, A., Nicholls, E., Hill, E., Goulson, D. (2015). Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environmental Science and Technology, 49, 1273112740.



IBAMA Ministério do Meio Ambiente. (1996). Portaria Normativa No 84, de 15 de outubro de 1996. Diário Oficial, 203, 21358–21366 (in Portuguese). http://www.ibama.gov.br/sophia/cnia/legislacao/IBAMA/PT0084-151096.pdf



Cang, T., Dai, D., Yang, G., Yu, Y., Lv, L., Cai, L., Wang, Q., Wang, Y. (2017). Combined toxicity of imidacloprid and three insecticides to the earthworm, Eisenia fetida (Annelida, Oligochaeta). Environmental Science and Pollution Research, 24, 8722–8730.



Casida, J. E. (2011). Neonicotinoid metabolism: Compounds, substituents, pathways, enzymes, organisms, and relevance. Journal of Agricultural and Food Chemistry, 59, 2923–2931.



Chen, C., Wang, Y., Zhao, X., Wang, Q., Qian, Y. (2014). Comparative and combined acute toxicity of butachlor, imidacloprid and chlorpyrifos on earthworm, Eisenia fetida. Chemosphere, 100, 111–115.



Chen, Y., Zang, L., Shen, G., Liu, M., Du, W., Fei, J., Yang, L., Chen, L., Wang, X., Liu, W., Zhao, M. (2019). Resolution of the ongoing challenge of estimating nonpoint source neonicotinoid pollution in the Yangtze River basin using a modified mass balance approach. Environmental Science and Technology, 53, 25392548.



Cimino, A. M., Boyles, A. L., Thayer, K. A., Perry, M. J. (2017). Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environmental Health Perspectives, 125, 155–162.



Daam, M. A., Chelinho, S., Niemeyer, J. C., Owojori, O. J., De Silva, P. M. C. S., Sousa, J. P., Van Gestel, C. A. M., Rombke, J. (2019). Environmental risk assessment of pesticides in tropical terrestrial ecosystems: test procedures, current status and future perspectives. Ecotoxicology and Environmental Safety, 181, 534e547.



De Cant, J., Barrett, M. (2010). Clothianidin Registration of Prosper t400 Seed Treatment on Mustard Seed (Oilseed and Condiment) and Poncho/votivo Seed Treatment on Cotton. United States Environmental Protection Agency.



de Lima e Silva, C., Brennan, N., Brouwer, J., Commandeur, D., Verweij, R., van Gestel, C. (2017). Comparative toxicity of imidacloprid and thiacloprid to different species of soil invertebrates. Ecotoxicology, 26, 555–564.



Dittbrenner, N., Moser, I., Triebskorn, R., Capowiez, Y. (2011). Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques. Chemosphere, 84, 1349–1355.



Doving, K. B. (1992). Assessment of animal behaviour as a method to indicate environmental toxicity. Comparative Biochemistry and Physiology, 100, 247–252.



Drobne, D., Blazic M., Van Gestel, C. A. M., Leser, V., Zidar, P., Jemec, A., Trebse, P. (2008). Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea), Chemosphere, 71, 1326–1334.



Edwards, C. A., Bohlen, P. J. (1992). The effects of toxic chemicals on earthworms. Reviews of Environmental Contamination and Toxicology, 125, 23–100.



Edwards, C. A., Fletcher K. E. (1988). Interactions between earthworms and microorganisms in organic-matter breakdown, Agriculture, Ecosystems and Environment., 24, 235–247.



EEC. (2003). SANCO/10329. Guidance Document on Terrestrial Ecotoxicology under Council Directive 91/414/EEC. Rev 2.



EFSA. (2012). Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe. EFSA Journal, 10, 2752.



El-Naggar, J. B., Zidan, N. E. A. (2013). Field evaluation of imidacloprid and thiamethoxam against sucking insects and their side effects on soil fauna. Journal of Plant Protection Research, 53, 375e387.



Fernández-Gómez, M. J., Romero, E., Nogales, R. (2011). Impact of imidacloprid residues on the development of Eisenia fetida during vermicomposting of greenhouse plant waste. Journal of Hazardous Materials, 192(3), 1886–1889.



García, C., Hernández, T., Costa, F. (1997). Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analysis, 28, 123–134.



Ge, J., Xiao, Y., Chai, Y., Yan, H., Wu, R., Xin, X., Yu, X. (2018). Sub-lethal effects of six neonicotinoids on avoidance behavior and reproduction of earthworms (Eisenia fetida). Ecotoxicology and Environmental Safety, 162, 423–429.



Gibbons, D., Morrissey, C., Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22, 103–118.



Gill, P., Rao, S., Gupta, R., Singh, D., Dahiya, T., Lather, D., Kumar, N. (2021). Assessment of neonicotinoid insecticide imidacloprid LC50 and their toxicity parameters against earthworm (Eisenia fetida). Research Square.



Girolami, V., Mazzon, L., Squartini, A., Mori, N., Marzaro, M., Bernardo, A. D., Greatti, M., Giorio, C., Tapparo, A. (2009). Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. Journal of Economic Entomology, 102, 18081815.



Goulson, D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50, 977–987.



Gu, Y. H., Li, Y., Huang, X. F., Zheng, J. F., Yang, J., Diao, H., Yuan, Y., Xu, Y., Liu, M., Shi, H.J., Xu, W. P. (2013). Reproductive effects of two neonicotinoid insecticides on mouse sperm function and early embryonic development in vitro. PLoS One, 8, e70112.



Hallmann, C. A., Foppen, R. P. B., van Turnhout, C. A. M., de Kroon, H., Jongejans, E. (2014). Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature, 511, 341–343.



Han, W., Tian, Y., Shen, X. (2018). Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere, 192, 59–65.



Hernández, D., Mansenét, V., Puiggrós Jové, J. M. (1999). Use of Confidor 200 SL in vegetable cultivation in Spain. Pflanzenschutz-Nachrichten Bayer, 52, 364375.



Iwafune, T., Ogino, T., Watanabe, E. (2014). Water-based extraction and liquid chromatography - tandem mass spectrometry analysis of neonicotinoid insecticides and their metabolites in green pepper/tomato samples. Journal of Agricultural and Food Chemistry, 62, 2790–2796.



Jemec, A., Tisler, T., Drobne, D., Sepcic, K., Fournier, D., Trebse, P. (2007). Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere, 68, 1408–1418.



Jeschke, P., Nauen, R., Michael Schindler, M., Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry, 59, 2897e2908.



Juraske, R., Castells, F., Vijay, A., Munoz, P., Antón, A. (2009). Uptake and persistence of pesticides in plants: measurements and model estimates for imidacloprid after foliar and soil application. Journal of Hazardous Materials, 165, 683–689.6



Kimura-Kuroda, J., Komuta, Y., Kuroda, Y., Hayashi, M., Kawano, H. (2012). Nicotine-like effects 467 of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One, 7, e32432.



Kumar, S., Singh, S. M. (2017). Morpho-histopathological response of phorate - an organo-phosphorous pesticide on the integumentary musculature of an epigeic earthworm, Eisenia fetida. International Journal of Current Microbiology and Applied Sciences, 6(4), 2048–2053.



Little, E. E. (1990). Behavioral toxicology: stimulating challenges for a growing discipline. Environmental Toxicology and Chemistry, 9, 3–10.



Lopez-Antia, A., Ortiz-Santaliestra, M., Mougeot, F., Mateo, R. (2013). Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole. Ecotoxicology, 22, 125138.



Luo, Y., Zang, Y., Zhong, Y. A., Kong, Z. M. (1999). Toxicological study of two novel pesticides on earthworm Eisenia foetida. Chemosphere, 39, 2347–2356.



Medrzycki, P., Montanari, R., Bortolotti, L., Sabatini, A. G., Maini, S., Porrini, C. (2003). Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bulletin of Insectology, 56, 5962.



Niemeyer, J. C., Chelinho, S., Sousa, J. P. (2017). Soil ecotoxicology in Latin America: current research and perspectives. Environmental Toxicology and Chemistry, 36, 1795e1810.



Niva, C. C., Niemeyer, J. C., Júnior, F. M., Nunes, M. E., De Sousa, D. L., Aragao, C. W., Sautter, K. D., Espindola, E. G., Sousa, J. P., Rombke, J. (2016). Soil ecotoxicology in Brazil is taking its course. Environmental Science and Pollution Research, 23, 11363e11378.



OECD Guideline for Testing of Chemicals. (1984). Earthworm, Acute Toxicity Tests”. Organization for Economic Co-operation and Development, Paris, 207. https://www.oecd.org/chemicalsafety/risk-assessment/1948293.pdf



Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., McField, M., Morrissey, C. A., Noome, D. A., Settele J., Simon-Delso, N., Stark, J. D., Van Der Sluijs, J. P., Van Dyck, H., Wiemers, M. (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22, 68102.



Renaud, M., Akeju, T., Natal-da-Luz, T., Leston, S., Rosa, J., Ramos, F., Sousa, J., Azevedo-Pereira, H. (2018). Effects of the neonicotinoids acetamiprid and thiacloprid in their commercial formulations on soil fauna. Chemosphere, 194, 85–93.



Scherrer, E. (1992). Behavioural responses as indicator of environmental alterations: approaches, results, developments. Journal of Applied Ichthyology, 8, 122–131.



Simon-Delso, N., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D. W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P., Krupke, C. H., Liess, M., Long, E., McField, M., Mineau, P., Mitchell, E. A. D., Morrissey, C. A., Noome, D. A., Pisa, L., Settele, J., Stark, J.D., Tapparo, A., Van Dyck, H., Van Praagh, J., Van der Sluijs, J. P., Whitehorn, P. R., Wiemers, M. (2015). Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 22, 5e34.



Smith, R. G., Atwood, L. W., Morris, M. B., Mortensen, D. A., Koide, R. T. (2016). Evidence for indirect effects of pesticide seed treatments on weed seed banks in maize and soybean. Agriculture, Ecosystems and Environment, 216, 269e273.



Song, S., Zhang, C., Chen, Z., He, F., Wei, J., Tan, H., Li, X. (2018). Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC-MS/MS with anion exchanger-disposable pipette extraction. Journal of Chromatography A, 1557, 51–61.



Spurgeon, D. J., Weeks J. M., Van Gestel, C. A. (2003). A summary of eleven years progress in earthworm ecotoxicology: The 7th International Symposium on Earthworm Ecology. Cardiff, Wales, 2002. Pedobiologia, 47(5), 588–606.



Stanley, D. A., Garratt, M. P. D., Wickens, J. B., Wickens, V. J., Potts, S. G., Raine, N.E. (2015). Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature, 528, 548550.



Stenersen, J., (1979). Action of pesticides on earthworms. Part I: The toxicity of cholinesteraseinhibiting insecticides to earthworms as evaluated by laboratory tests. Pesticide Science, 10(1), 6674.



Suchail, S., Guez, D., Belzunces, L. P. (2001). Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environmental Toxicology and Chemistry, 20, 2482–2486.



Tapparo, A., Marton, D., Giorio, C., Zanella, A., Soldà, L., Marzaro, M., Vivan, L., Girolami, V. (2012). Assessment of the environmental exposure of honeybees to particulate matter containing neonicotinoid insecticides coming from corn coated seeds. Environmental Science and Technology, 46, 2592–2599.



Tomizawa, M., Casida, J. E. (2005). Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology, 45, 247–268.



Ueyama, J., Harada, K. H., Koizumi, A., Sugiura, Y., Kondo, T., Saito, I., Kamijima, M. (2015). Temporal levels of urinary neonicotinoid and dialkylphosphate concentrations in Japanese women between 1994 and 2011. Environmental Science and Technology, 49, 1452214528.



van der Sluijs, J. P., Simon-Delso, N., Goulson, D., Maxim, L., Bonmatin, J. M., Belzunces, L. P. (2013). Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability, 5, 293–305.



van Gestel, C., de Lima e Silva, C., Lam, T., Koekkoek, J., Lamoree, M., Verweij, R. (2017). Multigeneration toxicity of imidacloprid and thiacloprid to Folsomia candida. Ecotoxicology, 26, 320–328.



Velki, M., Ecimovic, S. (2015). Changes in exposure temperature lead to changes in pesticide toxicity to earthworms: a preliminary study. Environmental Toxicology and Pharmacology, 40, 774e784.



Wang, J. H. (2012). The combined stress effects of atrazine and cadmium on the earthworm Eisenia fetida. Environmental Toxicology and Chemistry, 31(9), 2035–2040.



Wang, J., Wang, G., Zhu, L. (2016). DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere, 144, 510–517.



Wang, L., Liu, T., Liu, F., Zhang, J., Wu, Y., Sun, H. (2015). Occurrence and profile characteristics of the pesticide imidacloprid, preservative parabens, and their metabolites in human urine from rural and urban China. Environmental Science and Technology, 49, 14633–14640.



Wang, Y., Cang, T., Zhao, X., Yu, R., Chen, L., Wu, C. (2012). Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicology and Environmental Safety, 79, 122-128.



Whitehorn, P. R., O'Connor, S., Wackers, F. L., Goulson, D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science, 336, 351–352.



WHO (2006). Recommended classification of pesticides by hazard and guidelines to the classification, World Health Organization, Geneva. https://apps.who.int/iris/handle/10665/44271



Xu, J., Zhang, P., Mu, H., Gao, M. L. (2006). Toxicity Effect of Combined Contamination of Two Herbicides to Earthworm. Journal of Agro-Environment Science, 5, 018.



Zang, Y., Zhong, Y., Luo, Y., Kong, Z. M. (2000). Genotoxicity of two novel pesticides for the earthworm, Eisenia foetida. Environmental Pollution, 108, 271–278.



Zhang, Q., Zhang, B., Wang, C. (2014). Ecotoxicological effects on the earthworm Eisenia fetida following exposure to soil contaminated with imidacloprid. Environmental Science and Pollution Research, 21, 12345-12353.


Abstract views: 96
PDF Downloads: 60
Published
2021-05-14
How to Cite
Huslystyi, A., Gasso, V., Yermolenko, S., & Petrushevskyi, V. (2021). Characteristics of the toxic effect of imidacloprid on the state of Eisenia fetida (Annelida, Clitellata, Lumbricidae). Ecology and Noospherology, 32(1), 41-46. https://doi.org/https://doi.org/10.15421/032107