Λ-cyhalothrin causes oxidative stress accompanied by reduced glutathione alteration and modulation of regulatory protein p53 expression in the fish brain

  • V. Y. Gasso Oles Honchar Dnipro National University, Dnipro, Ukraine
  • V. S. Nedzvetsky Bingöl University, Bingöl, Turkey
  • R. O. Novitskyi Dnipro State Agrarian and Economic University, Dnipro, Ukraine
  • S. V. Yermolenko Oles Honchar Dnipro National University, Dnipro, Ukraine
Keywords: rainbow trout, Oncorhynchus mykiss, pyrethroids, pesticides, oxidative stress, reactive oxygen species, GSH, biomarkers

Abstract

The synthetic pyrethroid of systemic insecticidal and acaricidal action, λ-cyhalothrin, is characterized by typical axonal excitotoxicity. Currently, it is widely used in agriculture worldwide. In fish, it negatively affects the functional characteristics of the nervous system, causes motorial paralysis, and increases mortality. The concentrations of λ-cyhalothrin for the experiment were determined at a rate of 5% and 10% of LC50, which are 271 ng/L and 542 ng/L, respectively. Λ-cyhalothrin causes oxidative damage in the brain cells of the rainbow trout and, probably, irreversible disturbances in brain cells. The content of reduced glutathione in the fish brain treated by low doses of λ-cyhalothrin was significantly lower than in the control fish. It may indicate the breakdown of this part of antioxidant protection. One of the universal and multifunctional regulatory proteins, which plays a vital role in most cell types is the p53 protein that supports cell viability through a wide range of signalling pathways. Changes in the p53 protein expression are determined in fish of all experimental groups. Moreover, less significant suppression of its expression is found in fish that have been treated by a dose of 5% LC for 28 days. Unlike the 5% LC50, the dose of 10% LC50 induces a critical decrease in the p53 protein content after both 4 and 28 days of insecticide exposure. Detected changes in the reduced glutathione content and p53 protein expression in the fish brain are associated with the oxidative stress generation caused by low sublethal doses of λ-cyhalothrin. A significant decrease in the p53 protein content in the fish brain under the impact of the low doses of the synthetic pyrethroid can indicate irreversible disturbance of this protein functioning. The inhibition of protein p53 expression may be an adequate biomarker of the nervous cell adaptation to the toxic effect of synthetic pyrethroids in the fish brain.

References

 



Alak, G., Yeltekin, A. Ç., Özgeriş, F. B., Parlak, V., Uçar, A., Keleş, M. S., Atamanalp, M. (2019). Therapeutic effect of N-acetyl cysteine as an antioxidant on rainbow trout's brain in cypermethrin toxicity. Chemosphere, 221, 30–36.



Amaeze, N. H., Komolafe, B. O., Salako, A. F., Akagha, K. K., Briggs, T.-M. D., Olatinwo, O. O., Femi, M. A. (2020). Comparative assessment of the acute toxicity, haematological and genotoxic effects of ten commonly used pesticides on the African catfish, Clarias gariepinus Burchell 1822. Heliyon, 24, 6(8), e04768.



Bensaad, K., Vousden, K. H. (2007). p53: new roles in metabolism. Trends in Cell Biology, 17(6), 286–291.



Beutler, E., Duron, O., Kelly, B. M. (1963). Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61, 882–888.



Cheung, C. C., Zheng, G. J., Li, A. M., Richardson, B. J., Lam, P. K. (2001). Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis. Aquatic Toxicology, 52(3-4), 189–203.



Costa, C., Briguglio, G., Catanoso, R., Giambò, F., Polito, I., Teodoro, M., Fenga, C. (2020). New perspectives on cytokine pathways modulation by pesticide exposure. Current Opinion in Toxicology, 19, 99–104.



Dos Santos, A. A., Ferrer, B., Gonçalves, F. M., Tsatsakis, A. M., Renieri, E. A., Skalny, A. V., Farina, M., Rocha, J. T., Aschner, M. (2018). Oxidative stress in methylmercury-induced cell toxicity. Toxics, 6(3), 47–50.



Dueva, R., Iliakis, G. (2020).Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer, 2(3), zcaa022.



Farag, M. R., Alagawany, M., Bilal, R. M., Gewida, A., Dhama, K., Abdel-Latif, H., Amer, M. S., Rivero-Perez, N., Zaragoza-Bastida, A., Binnaser, Y. S., Batiha, G. E., Naiel, M. (2021). An overview on the potential hazards of pyrethroid insecticides in fish, with special emphasis on cypermethrin toxicity. Animals, 11(7), 1880.



Fernandes, C. E., da Silveira, A. W., do Nascimento Silva, A. L., de Souza, A. I., Povh, J. A., Dos Santos Jaques, J. A., Dos Santos, E. D. A., Yonekawa, M. K. A., de Barros Penteadoall B., Franco-Belussi, L. (2020). Osmoregulatory profiles and gill histological changes in Nile tilapia (Oreochromis niloticus) exposed to lambda-cyhalothrin. Aquatic Toxicology, 227, 105612.



Fuschi, P., Carrara, M., Voellenkle, C., Garcia-Manteiga, J. M., Righini, P., Maimone, B., Sangalli, E., Villa, F., Specchia, C., Picozza, M., Nano, G., Gaetano, C., Spinetti, G., Puca, A. A., Magenta, A., Martelli, F. (2017). Central role of the p53 pathway in the noncoding-RNA response to oxidative stress. Aging, 12(9), 2559–2586.



Gasso, V. Ya., Yermolenko, S. V., Bobyliov, Yu. P., Hahut, A. M., Huslystyi, A. O., Hasso, I. A., Petrushevskyi, V. B. (2020). Biomarkery vplyvu piretroidnykh ta neonikotynoidnykh insektytsydiv na lychynok zemnovodnykh [Biomarkers of influence of pyrethroid and neonicotinoid insecticides on the larvae of amphibians]. Ecology and Noospherology, 31 (1), 4651 (in Ukrainian).



Gurel, A., Coskun, O., Armutcu, F., Kanter, M., Ozen, O. A. (2005). Vitamin E against oxidative damage caused by formaldehyde in frontal cortex and hippocampus: biochemical and histological studies. Journal of Chemical Neuroanatomy, 29(3), 173–178.



Hu, J., Liu, Z. S., Tang, S. L., He, Y. M. (2007). Effect of hydroxyapatite nanoparticles on the growth and p53/c-Myc protein expression of implanted hepatic VX2 tumor in rabbits by intravenous injection. World Journal of Gastroenterology, 13(20), 2798–2802.



Hu, Z., Holzschuh, J., Driever, W. (2015). Loss of DDB1 leads to transcriptional p53 pathway activation in proliferating cells, cell cycle deregulation, and apoptosis in zebrafish embryos. PLoS One, 10(7), e0134299.



Huslystyi, A., Nedzvetsky, V., Yermolenko, S., Gasso, V., Petrushevskyi, V., Sukharenko, E. (2021a). Low doses of imidacloprid induce oxidative stress and neural cell disruption in earthworm Eisenia fetida. International Letters of Natural Sciences, 84, 1–11.



Huslystyi, A. O., Gasso, V. Ya., Yermolenko, S. V., Petrushevskyi, V. B. (2021b). Kharakterystyka toksychnoho vplyvu imidakloprydu na stan Eisenia fetida (Annelida, Clitellata, Lumbricidae) [Characteristics of the toxic effect of imidacloprid on the state of Eisenia fetida (Annelida, Clitellata, Lumbricidae)] Ecology and Noospherology, 32(1), 41–46 (in Ukrainian).



Jiang, D., Rusling, J. F. (2019). Oxidation chemistry of DNA and p53 tumor suppressor gene. Chemistry Open, 8(3), 252–265.



Kaur, M., Jindal, R. (2017). Oxidative stress response in liver, kidney and gills of Ctenopharyngodon idellus (Cuvier & Valenciennes) exposed to chlorpyrifos. MedCrave Online Journal of Biology and Medicine, 1(4), 103–112.



Kenšová, R., Kružíková, K., Havránek, J., Haruštiaková, D., Svobodová, Z. (2012). Distribution of mercury in rainbow trout tissues at embryo-larval and juvenile stages. Scientific World Journal, 20, 652–666.



Kum, C., Kiral, F., Sekkin, S., Seyrek, K., Boyacioglu, M. (2007). Effects of xylene and formaldehyde inhalations on oxidative stress in adult and developing rats livers. Experimental Animals, 56(1), 35–42.



Li, W.-G., Kostich, M. S., Bencic, D. C., Batt, A. L., See, M. J., Flick, R. W., Gordon, D. A., Lazorchak, J. M., Biales, A. D. (2019). Multigene biomarkers of pyrethroid exposure: exploratory experiments. Environmental Toxicology and Chemistry, 38(11), 2436–2446.



Li, Z. H., Zlabek, V., Grabic, R., Li, P., Machova, J., Velisek, J., Randak, T. (2010). Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+-K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 98(3), 297–303.



Lieberman, H. B., Panigrahi, S. K., Hopkins, K. M., Wang, L., Broustas, C. G. (2017). p53 and RAD9, the DNA damage response, and regulation of transcription networks. Radiation Research, 187(4), 424–432.



Liu, Q., Basu, N., Goetz, G., Jiang, N., Hutz, R. J., Tonellato, P. J., Carvan, M. J., 3rd. (2013). Differential gene expression associated with dietary methylmercury (MeHg) exposure in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). Ecotoxicology, 22(4), 740–751.



Marcel, V., Van Long, F. N., Diaz, J. J. (2018). 40 years of research put p53 in translation. Cancers (Basel), 10(5), 21.



Mathieu, C., Duval, R., Xu, X., Rodrigues-Lima, F., Dupret, J. M. (2015). Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates. Expert Opinion on Drug Metabolism & Toxicology, 11(1), 81–94.



Metcalf R. L., Horowitz A. R. (2014). Insect Control, 1. Fundamentals. Ullmann’s Encyclopedia of Industrial Chemistry. WileyVCH Verlag GmbH & Co. KGaA, Weinheim, 1–23.



Murta, G. L., Campos, K. K., Bandeira, A. C., Diniz, M. F., de Paula Costa, G., Costa, D. C., Talvani, A., Lima, W. G., Bezerra, F. S. (2016) Oxidative effects on lung inflammatory response in rats exposed to different concentrations of formaldehyde. Environmental Pollution, 211, 206–213.



Nedzvetsky, V. S., Gasso, V. Ya., Novitskyi, R. O., Yermolenko, S. V. (2020). Vplyv insektytsydu λ-tsyhalotrynu na okysniuvalnyi stres i ekspresiiu replikatyvnoho bilka A v mozku ryb [Influence of the insecticide λ-cyhalothrin on oxidative stress and expression of replicative protein A in the brain of fish]. Agrology, 3(3), 214–218 (in Ukrainian).



Nedzvetsky, V. S., Masiuk, D. M., Gasso, V. Y., Yermolenko, S. V., Huslystyi, A. O., Spirina, V. A. (2021). Low doses of imidacloprid induce disruption of intercellular adhesion and initiate proinflammatory changes in Caco-2 cells. Regulatory Mechanisms in Biosystems, 12(3), 430–437.



Özdemir, S., Altun, S., Özkaraca, M., Ghosi, A., Toraman, E., Arslan, H. (2018). Cypermethrin, chlorpyrifos, deltamethrin, and imidacloprid exposure up-regulates the mRNA and protein levels of bdnf and c-fos in the brain of adult zebrafish (Danio rerio). Chemosphere, 203, 318–326.



Pillet, M., Castaldo, G., De Weggheleire, S., Bervoets, L., Blust, R., De Boeck, G. (2019). Limited oxidative stress in common carp (Cyprinus carpio, L., 1758) exposed to a sublethal tertiary (Cu, Cd and Zn) metal mixture. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 218, 70–80.



Porter, J. R., Fisher, B. E., Baranello, L., Liu, J. C., Kambach, D. M., Nie, Z., Koh, W. S., Luo, J., Stommel, J. M., Levens, D., Batchelor, E. (2017). Global inhibition with specific activation: how p53 and MYC redistribute the transcriptome in the DNA double-strand break response. Molecular Cell, 67(6), 1013–1025.



Saito, Y, Nishio, K, Yoshida, Y, Niki, E. (2005). Cytotoxic effect of formaldehyde with free radicals via increment of cellular reactive oxygen species. Toxicology, 210(2–3), 235–245.



Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., Raisuddin, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology and Environmental Safety, 56(2), 295–301.



Sharma, R., Jindal, R. (2020). Assessment of cypermethrin induced hepatic toxicity in Catla catla: A multiple biomarker approach. Environmental Research, 184, 109359.



Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189.



Yadav, A., Tandon, A., Seth, B., Goyal, S., Singh, S. J., Tiwari, S. K., Agarwal, S., Nair, S., Chaturvedi, R. K. (2021). Cypermethrin impairs hippocampal neurogenesis and cognitive functions by altering neural fate decisions in the rat brain. Molecular Neurobiology, 58(1), 263–280.



Yang, C., Lim, W., Song, G. (2020). Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 234, 108758.



Zhang, J. F., Shen, H., Wang, X. R., Wu, J., Xue, Y. (2004). Effects of chronic exposure of 2,4 dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere, 55(2), 167–174.



 


Abstract views: 76
PDF Downloads: 65
Published
2021-11-01
How to Cite
Gasso, V., Nedzvetsky, V., Novitskyi, R., & Yermolenko, S. (2021). Λ-cyhalothrin causes oxidative stress accompanied by reduced glutathione alteration and modulation of regulatory protein p53 expression in the fish brain. Ecology and Noospherology, 32(2), 71-76. https://doi.org/https://doi.org/10.15421/032112