Free DNA in nature as a tool of ecological monitoring of the environment

  • V. M. Pomohaibo Poltava M. V. Ostrogradsky Regional Institute of Postgraduate Pedagogical Education
  • L. D. Orlova Poltava National Pedagogical V. G. Korolenko University
  • N. A. Vlasenko Poltava National Pedagogical V. G. Korolenko University
Keywords: environmental DNA (eDNA), past and present biodiversity, top soil, fresh and sea water, sediments, glaciers


Free DNA in nature or the environmental DNA (eDNA) contains unique information about the diversity not only of unicellular but also of multicellular organisms – fungi, plants, invertebrates and vertebrates in the past and contemporary nature. eDNA of a soil surface and of an aquatic environment may indicate a presence of contemporary living organisms and deposits, sediments and glaciers – wildlife diversity in the geological past. Fungi are reducers, symbions and parasites and play an important ecological role in nature, and so it is important to know their taxonomic and functional characteristics. Analysis eDNA in samples of forest soil showed that ascomycetes and basidiomycetes are represented most of all. They were identified as mycorrhizal types, plant pathogens and saprotrophes. In soils of different climatic zones DNA of numerous taxons of plant (herbs, shrubs, trees), unicellular and multicellular animals (protozoans, earthworms, birds, mammals) was discovered. In spite of this unknown species of fungi and earthworms were discovered. It was ascertained that eDNA of soil surface layer do not move practically and it is able to display a complete taxonomic filling of vertebrates and relative biomass of individual species. Researches of eDNA of freshwater ecosystems is focused to identify and control spreading of invasive species of crustaceans, mollusks, fishes, amphibians and reptiles with the goal of conservation of biological diversity and ecological balance. It is shown that eDNA may be a better tool to identify these species in comparison with traditional methods of audio and visual observation. At the same time a population size and an ontogenetic stage are not important. Another research direction of eDNA in a fresh water aims to identify species of aquatic animals (crustaceans, insects, fish, amphibians and mammals) at risk of extinction. A short time of eDNA existence in freshwater ecosystems is very useful for a nature protecting, because it can indicate a presence, status and disappearance of species. Thus eDNA of previous population, which is rapidly destroyed, will not interfere with the analysis. However, it is necessary to remember that in river ecosystems eDNA moves with the stream at a great distance. Further researches of eDNA in seawater samples are necessary, because in this aquatic environment the ability to move and storage time of free genetic material is insignificant. In land deposits, water sediments and glaciers free DNA do not move and may be preserved for long periods – till hundreds of thousands of years, that gives a possibility to obtain valuable information about the wildlife of paleoenvironments. In samples of permafrost deposits was found eDNA of numerous taxons of fungi, plants, three species of beetles, two species of fossil bird moa, mammoth, bison, horse. Water sediments is rich in eDNA also. In sea sediments extracellular DNA is much more than in sea water. Moreover, the anoxic conditions slow down destructive processes that ensures its long-term preservation. Sea sediments, especially estuary sediments are used to determine influence of human activities on the biological communities of ecosystems. Sediments of freshwater lake also contain eDNA, which represent degrading consequences of human interaction with the environment. Results of eDNA study of lake sediments as well as a study of soil deposits complement results of a study of pollen and fossil plant residues. It confirms a feasibility to combine traditional and molecular genetic methods in ecological researches to obtain most authentic data about past plant diversity. eDNA of many organisms is contained in glaciers. The analysis of this DNA permitted to identify 57 taxons of fungi, 8 orders of higher plants, taxons of protozoans and insects.


Andersen, K., Bird, K. L., Rasmussen, M., Haile, J., Breuning-Madsen, H., Kjær, K. H., Orlando, L., Gilbert, M. Th. P., Willerslev, E., 2012. Meta-barcoding of “dirt”DNA from soil reflects vertebrate biodiversity. Mol. Ecol. 21(8), 1966–1979.
Anderson, I. C., Cairney, J. W. G., 2004. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ. Microbiol. 6(8), 769–779.
Anderson-Carpenter, L. L., McLachlan, J. S., Jackson, S. T., Kuch, M., Lumibao, C. Y., Poinar, H. N., 2011. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evol. Biol. 11(1), 30, 15 p.
Bhadury, P., Austen, M. C., Bilton, D. T., Lambshead, P. J. D., Rogers, A. D., Smerdon, G. R., 2006. Molecular detection of marine nematodes from environmental samples: overcoming eukaryotic interference. Aquat. Microb. Ecol. 44(1), 97–103.
Bienert, F., De Danieli, S., Miquel, C., Coissac, E., Poillot, C., Brun, J.-J., Taberlet, P., 2012. Tracking earthworm communities from soil DNA. Mol. Ecol. 21(8), 2017–2030.
Blum, S. A. E., Lorenz, M. G., 1997. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst. Appl. Microbiol. 20(4), 513–521.
Brock, T. D., 1987. The study of microorganisms in-situ: progress and problems. Symp. Soc. Gen. Microbiol. 41, 1–17.
Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., Martin, F., 2009. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184(2), 449–456.
Chariton, A. A., Court, L. N., Hartley, D. M., Colloff, M. J., Hardy, C. M., 2010. Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Front. Ecol. Environ. 8(5), 233–238.
Corinaldesi, C., Barucca, M., Luna, G. M., Dell’Anno, A., 2011. Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments. Mol. Ecol. 20(3), 642–654.
Deagle, B. E., Eveson, J. P., Jarman, S. N., 2006. Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Front. Zool. 3(11), 1–10.
Deiner, K., Altermatt, F., 2014. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE. 9(2), e88786.
Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., Miaud, C., 2011. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE. 6(8), e23398.
Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E., Miaud, C., 2012. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49(4), 953–959.
Dell’Anno, A., Corinaldesi, C., 2004. Degradation and turnover of extracellular DNA in marine sediments: ecological and methodological considerations. Appl. Environ. Microbiol. 70(7), 4384–4386.
Dell’Anno, A., Danovaro, R., 2005. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309(5744), 2179–2179.
Environmental DNA: A powerful new tool for biological conservation, 2015. Special Issue. Biol. Conserv. 183, 1–102.
Epp, L. S., Boessenkool, S., Bellemain, E. P., Haile, J., Esposito, A., Riaz, T., Erséus, C., Gusarov, V. I., Edwards, M. E., Johnsen, A., Stenøien, H. K., Hassel, K., Kauserud, H., Yoccoz, N. G., Bråthen, K. A., Willerslev, E., Taberlet, P., Coissac, E., Brochmann, C., 2012. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol. Ecol. 21(8), 1821–1833.
Ficetola, G. F., Miaud, C., Pompanon, F., Taberlet, P., 2008. Species detection using environmental DNA from water samples. Biol.Lett. 4(4), 423–425.
Fierer, N., Jackson, R. B., 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 103(3), 626–631.
Fisher, M. M., Triplett, E. W., 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65(10), 4630–4636.
Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, D. M., Neill, S. P., Packer, M., Blaxter, M. L., Lambshead, P. J. D., Thomas, W. K., Creer, S., 2010. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat. Commun. 1(7), 98, 8 p..
Foote, A. D., Thomsen, P. F., Sveegaard, S., Wahlberg, M., Kielgast, J., Kyhn, L. A., Salling, A. B., Galatius, A., Orlando, L., Gilbert, M. Th. P., 2012. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE. 7(8), e4178.
Garibyan, L., Avashia, N., 2013. Polymerase Chain Reaction. J. Investig. Derm. 133(3), e6, 4 p.
Giguet-Covex, C., Pansu, J., Arnaud, F., Rey, P.-J., Griggo, C., Gielly, L., Domaizon, I., Coissac, E., David, F., Choler, P., Poulenard, J., Taberlet, P., 2014. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5(2), 3211, p.
Goldberg, C. S., Pilliod, D. S., Arkle, R. S., Waits, L. P., 2011. Molecular detection of vertebrates in stream water: a demonstration using rocky mountain tailed frogs and idaho giant salamanders. PLoS ONE. 6(7), e22746, 5 p.
Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J., Waits, L. P., 2013. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw. Sci. 32(3), 792–800.
Haile, J., Holdaway, R., Oliver, K., Bunce, M., Gilbert, M. Th. P., Nielsen, R., Munch, K., Ho, S. Y. W., Shapiro, B., Willerslev, E., 2007. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol. 24(4), 982–989.
Haile, J., Froese, D. G., MacPhee, R. D., Roberts, R. G., Arnold, L. J., Reyes, A. V., Rasmussen, M., Nielsen, R., Brook, B. W., Robinson, S., 2009. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl. Acad. Sci. USA. 106(52), 22352–22357.
Hansen, A. J., Mitchell, D. L., Wiuf, C., Paniker, L., Brand, T. B., Binladen, J., Gilichinsky, D. A., Rønn, R., Willerslev, E., 2006. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics. 173(2), 1175–1179.
Hebert, P. D. N., Cywinska, A., Ball Sh. L., deWaard, J. R., 2003. Biological identifications through DNA barcodes. Proc. Roy. Soc. B. 270(1512), 313–321.
Hebsgaard, M. B., Gilbert, M. T. P., Arneborg, J., Heyn, P., Allentoft, M. E., Bunce, M., Munch, K., Schweger, C., Willerslev, E., 2009. “The farm beneath the sand” – an archaeological case study on ancient “dirt” DNA. Antiquity. 83(320), 430–444
Hofreiter, M., Poinar, H. N., Spaulding, W. G., Bauer, K., Martin, P. S., Possnert, G., Pääbo, S., 2000. A molecular analysis of ground sloth diet through the last glaciation. Mol. Ecol. 9(12), 1975–1984.
Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., Letcher, B. H., Whiteley, A. R., 2014. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 15(1), 216–227.
Jerde, Ch. L., Mahon, A. R., Chadderton, W. L., Lodge, D. M., 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4(2) 150–157.
Jerde, C. L., Chadderton, W. L., Mahon, A. R., Renshaw, M. A., Corush, J., Budny, M. L., Mysorekar, S., Lodge, D. M., 2013. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can. J. Fish. Aquat. Sci. 70(4), 522–526.
Johnson, S. S., Hebsgaard, M. B., Christensen, T. R., Mastepanov, M., Nielsen, R., Munch, K., Brand, T., Gilbert, M. T. P., Zuber, M. T., Bunce, M., Rønn, R., Gilichinsky, D., Froese, D., Willerslev, E., 2007. Ancient bacteria show evidence of DNA repair. Proc. Natl. Acad. Sci. USA. 104(36), 14401–14405.
Jørgensen, T., Haile, J., Möller, P., Andreev, A., Boessenkool, S., Rasmussen, M., Kienast, F., Coissac, E., Taberlet, P., Brochmann, Ch., Bigelow, N. H., Andersen, K., Orlando, L., Gilbert, M. Th. P., Willerslev, E., 2012a. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability. Mol. Ecol. 21(8), 1989–2003.
Jørgensen, T., Kjaer, K. H., Haile, J., Rasmussen, M., Boessenkool, S., Andersen, K., Coissac, E., Taberlet, P., Brochmann, C., Orlando, L., Gilbert, M. T. P., Willerslev, E., 2012b. Islands in the ice: detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA Meta-barcoding: islands in the ice. Mol. Ecol. 21(8), 1980–1988.
Kelly, R. P., Port, J. A., Yamahara, K. M., Crowder, L. B., 2014. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE. 9(1), e86175, 11 p.
Levy-Booth, D. J., Campbell, R. G., Gulden, R. H., Hart, M. M., Powell, J. R., Klironomos, J. N., Pauls, K. P., Swanton, C. J., Trevors, J. T., Dunfield, K. E., 2007. Cycling of extracellular DNA in the soil environment. Soil Biology and Biochemistry. 39(12), 2977–2991.
Lydolph, M. C., Jacobsen, J., Arctander, P., Gilbert, M. T. P., Gilichinsky, D. A., Hansen, A. J., Willerslev, E., Lange, L., 2005. Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl. Environ. Microbiol. 71(2), 1012–1017.
Mahon, A. R., Jerde, C. L., Galaska, M., Bergner, J. L., Chadderton, W. L., Lodge, D. M., Hunter, M. E., Nico, L. G., 2013. Validation of eDNA surveillance sensitivity for detection of asian carps in controlled and field experiments. PLoS ONE. 8(3), e58316, 6 p.
Martellini, A., Payment, P., Villemur, R., 2005. Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res. 39(4), 541–548.
Matisoo-Smith, E., Roberts, K., Welikala, N., Tannock, G., Chester, P., Feek, D., Flenley, J., 2008. Recovery of DNA and pollen from New Zealand lake sediments. Quat. Int. 184(1), 139–149.
Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N., Kawabata, Z., 2012. Surveillance of fish species composition using environmental DNA. Limnology. 13(2), 193–197.
O’Brien, H. E., Parrent, J. L., Jackson, J. A., Moncalvo, J.-M., Vilgalys, R., 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71(9), 5544–5550.
Ogram, A., Sayler, G.S., Barkay, T., 1987. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods. 7(2-3), 57–66.
Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R., Stahl, D. A., 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365.
Olson, Z. H., Briggler, J. T., Williams, R. N., 2012. An eDNA approach to detect eastern hellbenders (Cryptobranchus a. alleganiensis) using samples of water. Wildl. Res. 39(7), 629.
Pace, N. R., Stahl, D. A., Lane, D. J., Olsen, G. J., 1986. The analysis of natural microbial populations by ribosomal RNA sequences. In: Advances in Microbial Ecology. Vol. 9. (Ed. K. C. Marshall). N.-Y.: Springer Sc+BM, XIV+402 p., 1–55.
Parducci, L., Jørgensen, T., Tollefsrud, M. M., Elverland, E., Alm, T., Fontana, S. L., Bennett, K. D., Haile, J., Matetovici, I., Suyama, Y., Edwards, M. E., Andersen, K., Rasmussen, M., Boessenkool, S., Coissac, E., Brochmann, Ch., Taberlet, P., Houmark-Nielsen, M., Larsen, N. K., Orlando, L., Gilbert, M. Th. P., Kjær, K. H., Alsos, I. G., Willerslev, E., 2012. Glacial survival of boreal trees in northern Scandinavia. Science. 335(6072), 1083–1086.
Parducci, L., Matetovici, I., Fontana, S. L., Bennett, K. D., Suyama, Y., Haile, J., Kjær, K. H., Larsen, N. K., Drouzas, A. D., Willerslev, E., 2013. Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia. Mol. Ecol. 22(13), 3511–3524.
Paul, J. H., Jeffrey, W. H., DeFlaun, M. F., 1987. Dynamics of extracellular DNA in the marine environment. Appl. Environ. Microbiol. 53(1), 170–179.
Paul, J. H., Jeffrey, W. H., David, A. W., DeFlaun, M. F., Cazares, L. H., 1989. Turnover of extracellular DNA in eutrophic and oligotrophic freshwater environments of southwest Florida. Appl. Environ. Microbiol. 55(7), 1823–1828.
Pawlowski, J., Christen, R., Lecroq, B., Bachar, D., Shahbazkia, H. R., Amaral-Zettler, L., Guillou, L., 2011. Eukaryotic richness in the abyss: Insights from pyrotag sequencing. PLoS ONE 6(4), e18169, 10 p.
Pedersen, M. W., Ginolhac, A., Orlando, L., Olsen, J., Andersen, K., Holm, J., Funder, S., Willerslev, E., Kjær, K. H., 2013. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. Quat. Sci. Rev. 75, 161–168.
Piaggio, A. J., Engeman, R. M., Hopken, M. W., Humphrey, J. S., Keacher, K. L., Bruce, W. E., Avery, M. L., 2014. Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Mol. Ecol. Resour. 14(2), 374–380.
Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., Nannipieri, P., 2009. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol. Fertil. Soils. 45(3), 219–235.
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., Waits, L. P., Richardson, J., 2013. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70(8), 1123–1130.
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., Waits, L. P., 2014. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol. Ecol. Resour. 14(1), 109–116.
Pomohaibo, V. M., Orlova, L. D., Vlasenko, N. A., 2016. DNK otochyuuchoho seredovyshcha: ekolohichnyy ta henetychnyy aspekty [Environmental DNA: ecological and genetic aspects]. Ecology and Noospherology 27(1-2), 16–24.
Poté, J., Mavingui, P., Navarro, E., Rosselli, W., Wildi, W.P., Vogel, T.M., 2009b. Extracellular plant DNA in Geneva groundwater and traditional artesian drinking water fountains. Chemosphere. 75(4), 498–504.
Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, S., Wu, D., Eisen, J. A., Hoffman, J. M., Remington, K., Beeson, K., Tran, B., Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J., Freeman, J., Andrews-Pfannkoch, C., Venter, J. E., Li, K., Kravitz, S., Heidelberg, J. F., Utterback, T., Rogers, Y.-H., Falcón, L. I., Souza, V., Bonilla-Rosso, G., Eguiarte, L. E., Karl, D. M., Sathyendranath, S., Platt, T., Bermingham, E., Gallardo, V., Tamayo-Castillo, G., Ferrari, M. R., Strausberg, R. L., Nealson, K., Friedman, R., Frazier, M., Venter, J. C., 2007. The sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical pacific. PLoS Biol. 5(3), e77, 0398–0431.
Santas, A. J., Persaud, T., Wolfe, B. A., Bauman, J. M., 2013. Noninvasive method for a statewide survey of eastern hellbenders Cryptobranchus alleganiensis using environmental DNA. Int. J. Zool. 2013, art. ID 174056, 6 p.
Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M., Herndl, G. J., 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA. 103(32), 12115–12120.
Sønstebø, J. H., Gielly, L., Brysting, A. K., Elven, R., Edwards, M., Haile, J., Willerslev, E., Coissac, E., Rioux, D., Sannier, J., Taberlet, P., Brochmann, C., 2010. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol. Ecol. Resour. 10(6), 1009–1018.
Taberlet, P., Prud’Homme, S. M., Campione, E., Roy, J., Miquel, C., Shehzad, W., Gielly, L., Rioux, D., Choler, P., CléMent, J.-C., Melodelima, C., Pompanon, F., Coissac, E., 2012. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21(8), 1816–1820.
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., Kawabata, Z., 2012. Estimation of fish biomass using environmental DNA. PLoS ONE. 7(4), e35868, 8 p.
Takahara, T., Minamoto, T., Doi, H., 2013. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE. 8(2), e56584, 5 p.
Thomsen, P. F., Elias, S., Gilbert, M. T. P., Haile, J., Munch, K., Kuzmina, S., Froese, D. G., Sher, A., Holdaway, R. N., Willerslev, E., 2009. Non-destructive sampling of ancient insect DNA. PLoS One. 4(4), e5048, 6 p.
Thomsen, Ph. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. Th. P., Orlando, L., Willerslev, E., 2011. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21(11), 2565–2573.
Thomsen, Ph. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen, M., Willerslev, E., 2012. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE. 7(8), e41732.
Tomšovský M., KolaÍík M., Pañoutová S. and Homolka L. Molecular phylogeny of European Trametes (Basidiomycetes, Polyporales) species based on LSU and ITS (nrDNA) sequences, Nova Hedwigia, 2006, 82(3-4): 269–280; doi:10.1127/0029-5035/2006/0082-0269
Tréguier, A., Paillisson, J.-M., Dejean, T., Valentini, A., Schlaepfer, M.A., Roussel, J.-M., 2014. Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. J. Appl. Ecol. 51(4), 871–879.
Tringe, S. G., von Mering, C., Kobayashi, A., Salamov, A. A., Chen, K., Chang, H. W., Podar, M., Short, J. M., Mathur, E. J., Detter, J. C., Bork, P., Hugenholtz, P., Rubin, E. M., 2005. Comparative metagenomics of microbial communities. Science. 308(5721), 554–557.
Tucker, T., Marra, M., Friedman, J. M., 2009. Massively parallel sequencing: The next big thing in genetic medicine. Amer. J. Hum. Genet. 85(2), 142–154.
Turner, C. R., Barnes, M. A., Xu, Ch, C. Y., Jones, S. E., Jerde, Ch. L., Lodge, D. M., 2014. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol Evol. 5(7), 676–684.
Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y.-H., Smith, H. O., 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 304(5667), 66–74.
Willerslev, E., Hansen, A., Christensen, B., Steffensen, J.P., Arctander, P., 1999. Diversity of Holocene life forms in fossil glacier ice. Proc. Natl Acad. Sci. USA. 96(14), 8017–8021.
Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., Gilbert, M. Th. P., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D. A., Cooper, A., 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science. 300(5620), 791–795.
Willerslev, E., Hansen, A. J., Rønn, R., Brand, T. B., Barnes, I., Wiuf, C., Gilichinsky, D. A., Mitchell, D., Cooper, A., 2004. Long-term persistence of bacterial DNA. Curr. Biol. 14(1), R9–R10.
Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B., Brand, T. B., Hofreiter, M., Bunce, M., Poinar, H. N., Dahl-Jensen, D., Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J.-L., Nathan, R., Armitage, S., Hoog, C.-J., de, Alfimov, V., Christl, M., Beer, J., Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J., Taberlet, P., Gilbert, M. Th. P., Casoli, A., Campani, E., Collins, M. J., 2007. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science. 317(5834), 111–114.
Yoccoz, N. G., Brathen, K. A., Gielly, L., Haile, J., Edwards, E., Goslar, T., Stedingk, H., von, Brysting, A. K., Coissac, E., Pompanon, F., Sønstebø, J. H., Miquel, C., Valentini, A., Bello, F., de, Chave, J., Thuiller, W., Wincker, P., Cruaud, C., Gavory, F., Rasmussen, M., Gilbert, M. Th. P., Orlando, L., Brochmann, C., Willerslev, E., Taberlet, P., 2012. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21(15), 3647–3655.
Zinger, L., Amaral-Zettler, L. A., Fuhrman, J. A., Horner-Devine, M. C., Huse, S. M., Welch, D. B. M., Martiny, J. B. H., Sogin, M., Boetius, A., Ramette, A., 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE. 6(9), e24570, 11 p.

Abstract views: 197
PDF Downloads: 75
How to Cite
Pomohaibo, V., Orlova, L., & Vlasenko, N. (2017). Free DNA in nature as a tool of ecological monitoring of the environment. Ecology and Noospherology, 28(1-2), 17-27.

Most read articles by the same author(s)