Species specificity of woody trees adaptation at technogenically transformed urbanhabitats of the Kyiv megalopolisis

  • O. G. Lucyshyn Institute for evolution ecology of NAS of Ukraine
  • I. K. Teslenko Institute for evolution ecology of NAS of Ukraine
Keywords: megalopolis, woody plants, phytotoxic elements (Nа , Cl-, Pb2 , Cd2 ), bioaccumulation, localization), morphophysiological features, variability, correlative relationship, adaptive capacity

Abstract

The recent ecological situation of Kyiv megalopolis has a special specific of environment technogenic pollution as a chemical features and content of polluting phytotoxicants. During 2007–2012, our observation revealed what the most dangerous factors which have harm impact on the street woody plants are the huge concentration of phytotoxic elements (Na+, Cl-, Pb2+, Cd2+). Nowadays, the technogenic impact on the megalopolyisis surrounding comes to the dangerous, even, catastrophic level. The main reason of total and chloral necrose of leaves, the summer defoliation of crown and major tree's death is the over pollution of the soil and plant's phytomass by phytotoxic elements, the concentration of which by standards evaluation and by trees reactions are critical and exists at the level of adaptation possibility and survival. The main sources of Pb2+ and Cd2+ ions are transport outcomes (> 90 % of total technogenic pollution). The increasing of Pb2+ and Cd2+ in the soil is depended from intensivity of transport outcomes, using of ethylated petrol, and location of trees along roads as well as from the trees species. Continuously increasing of number of cars at the city streets is accompanying with similar increasing of ions concentration. Thus, in the soil around root system of street woody plants, depending from their location along roads, the concentration of Pb2+ (moving form) is between 41,7 (I. Kudri str.) and 102,6 mg\kg of soil (Nauki avenue). It exceeds the maximum permissible concentration (MPC), which is 20,8–51,3 mg\kg of soil. Next, for Norway maple (Acer platanoides) the concentration of Pb2+ in the soil varies from 41,7 to 80,5 mg / kg of soil in the area of the root system and it is around 20,8–40,2 MPC. In the leaves of this tree it is 7,83–13,5 mg / kg of dry mass (MPC is 15,8–27,0). For the horse chestnut (Aedculus hippocastanum) at the Nauka avenue, the concentration of plumbum in the root is 13,4 mg / kg (MPC is 26,8), in the cortex – 17,7 mg / kg (MPC is 35,4), in leaves – 8,21 mg / kg (MPC is 16,4), which by the normative evaluation are the critical concentrations. The source of Na+ and Cl-, which is a new factor for Kyiv megalopolis, is irregular load of high concentrations of industrial salt NaCl into the environment, as a way against black ice in winter time, where the Na+ ions ( mobile form) is in the high concentrations in leaves (0,76 % for Norway maple (Acer platanoides) on the I. Kudri str., 1,28 % – small-leaved linden (Tilia cordata) at the 40-richya Zhovtnya ave, 2,0 % – horse chestnut (Aedculus hippocastanum) at the Nauki ave), those are exceeded the concentration of the element comparing to the control test object, respectively, in 10,6, 12,8 and 5,0 times. Na+ ions are an aggressive phytotoxins and the main factor of leaves necrose of tree crown (within 70–100 % necrosis leaves in the crown). Degradation and total reduction of the specific weight of plants in the megalopolis environment are decrease the cleaning role of the street tree plants, which are the main alive filters for soil and air cleaning, as well as the main bioaccumulators and detoxicants of harm substances of anthropogenic pollution. Species adaptive specificity is revealed at the bioaccumulation level and the selective locality of phytotoxic elements (Na+, Cl-, Pb2+, Cd2+, agile form) in technourbanhabitats-pic conditions, there dominated bioaccumulation and localization of Na+ ions by trees assimilative system is caused the adaptive orientation of endogenic and intraspecific variability of phytoindicative morphophysiologic features of plants functional condition under the stressing factors. This also is defined the sensitivity of small-leaved linden (Tilia cordata Mill.), norway maple (Acer platanoides L.) and horse chestnut (Aesculus hippocastanum L.) to the big concentration of potassium as the most danger one for the plant survival. The biggest accumulation of Na+ ions at the roots of Lombardy poplar (Populus pyramidalis Roz.), Bolle's poplar (Populus bolleana Lauche) and sugar maple (Acer saccharinum L.) is lead to a higher resistance of their assimilation system. At the technourbohabitate-pic conditions, the level of realization of ontogenetic and phylogenetic adaptive capacity of the sensitive species of trees is harmfully low (21,3–44,3 %). It is at the level of survival/death of plants. The street Lombardy poplar, Bolle's poplar and sugar maple, despite of more higher level of their adaptation (68,4–87,7 %), still also can't fully adapt to the critical levels of technogenic pollution of megalopolis environment. 

References

Alekseeva-Popova, N. V., Igoshina, T. I., 1993. Genotipicheskaya reaktsiya ustoychivosti k tsinku populyatsii shalfeya stepnogo [Genotypic reaction of resistance of shalfeya steppe population physiology and biochemistry of cultivated plants], Fiziologiya i biohimiya kulturnih rasteniy, 25(1), 19–23 (in Russian).
Bezel, V. S., Pozolotina, V. S., Belsky, V. N., Zhuykova, T. V., 2001. Izmenchivost populyatsionnyih parametrov: adaptatsiya k toksicheskim faktoram sredyi [Variation of population parameters: adaptation to the toxic environmental factors], Ekologiya, 6, 447–453 (in Russian).
Demkiv, O. T., Khorkavtsiv, Ya. D., Kardan, O. R., Rechevska, N. Ya., 1995. Stratehiya adaptatsiyi roslyn do nespryyatlyvykh faktoriv dovkillya [The strategy of plant adaptation to the unfavorable environmental factors], Aktualni pytannya fiziolohiyi roslyn v aspekti ekolohichnykh problem Ukrayiny. Chernivtsi, Kyiv, 19–20 (in Ukrainian).
Goncharik, M. N., 1968. Fiziologicheskoe vliyanie ionov hlora na rasteniya [Physiologic affect of chloral ions on plants], Nauka i tehnika, Minsk (in Russian).
Grodzinskiy, D. M., 1983. Nadezhnost rastitelnyih sistem [Security of the plant systems], Nauk. dumka, Kyiv (in Russian).
Hnativ, P. S., 2001. Osoblyvosti adaptatsiyi derev v antropohennomu dovkilli [Features of tree adaptation in the anthropogenic surrounding], Naukovyy visnyk Uzhhorodskoho un-tu: Biolohiya, 1, 100–102 (in Ukrainian).
Huralchuk, Zh. Z., 2006. Fitotoksychnist vazhkykh metaliv ta stiykist roslyn do yikh diyi [Phytotoxicy of heavy metals and plant resistance to their impact], Lohos, Kyiv (in Ukrainian).
Ilkun, G. M., 1978. Zagryazniteli atmosferyi i rasteniya [Pollutants of atmosphere and plants]. Nauk. dumka, Kyiv (in Russian) .
Kabanov, V. V., Myasoedov, N. A., 1974. Toksichnost kationov schelochnyih metalov dlya rasteniy tomatov [The toxicy of cautions of alkali metals for tomato plants], Fiziologiya rasteniy, 26 (2), 391–397 (in Russian).
Kabanov, V. V., Myasoedov, N. A., 1974. Vliyanie schelochnyih elementov na sostav azotsoderzhaschih soedineniy listev tomatov [The effect of alkali elements on nitrogencontaining compounds of tomato leaves], Fiziologiya rasteniy, 21(6), 1223–1229 (in Russian).
Kartashev, A. V., Raduina, N. L., Ivanov, U. V., 2008. Rol sistemyi antioksidantnoy zaschityi pri adaptatsii dikorastuschih vidov rasteniy k solevomu stresu [The role of antioxidant defense system at the adaptation of wild plant species to the salt stress], Fiziologiya rasteniy, 55 (4), 516–522 (in Russian).
Korshikov, I. I., 1996. Adaptatsiya rasteniy k usloviyam tehnogennogo zagryazneniya sredyi [The adaptation of plants to the environmental technogenic pollution condition], Nauk. dumka, Kyiv (in Russian).
Kulagin, Yu. Z., 1973. Gazoustoychivost rasteniy i predadaptatsiya [The gas resistance of plant and preadaptation], Ekologiya, 2, 50–54 (in Russian).
Levon, F. M., 1999. Vulychni nasadzhennya Kyyiva: suchasnyy stan, shlyakhy optymizatsiyi [Street plants of Kyiv: recent state, ways of optimization], Naukovyy visnyk NAU, Lisivnytstvo, 20, 109–118 (in Ukrainian).
Lutsyshyn, O. H., Radchenko, V. H., Palapa, N. V., Yavorovskyy, P. P., 2010. Monitorynh zabrudnennya system grunt – roslyna fitotoksychnymy elementamy v zelenykh zonakh m. Kyyiv [The pollution monitoring of systems of soil – plant by phytotoxic elements in green zones of Kyiv], Dopovidi NAN Ukrayiny, 2, 194–199 (in Ukrainian).
Lutsyshyn, O. H., Radchenko, V. H., Palapa, N. V., Yavorovskyy, P. P., 2010. Morfofiziolohichna otsinka stanu rostovykh protsesiv derevnykh roslyn Kyyivs'koho mehapolisu za umov tekhnohennoho zabrudnennya dovkillya [Morphophysiological evaluation of growing process of woody plants in Kyiv megalopolis under technogenic pollution of environment], Dopovidi NAN Ukrayiny, 7, 188–195 (in Ukrainian).
Lutsyshyn, O. H., Radchenko, V. H., Palapa, N. V., Yavorovskyy, P. P., Vesna, V. Ya., Skrypnyk, H. L., Kovalova, O. M., 2011. Fizyko-khimichni vlastyvosti gruntiv v umovakh Kyyivs'koho mehapolisu [Physical and chemical features of soils in Kyiv
Lutsyshyn, O. H., Radchenko, V. H., Palapa, N. V., Yavorovskyy, P. P., 2010. Makromorfolohichni zminy reaktsiyi – vidpovidi roslynnykh orhanizmiv derevnykh vulychnykh nasadzhen Kyyivskoho mehapolisu pry stresovomu rivni tekhnohennoho zabrudnennya [Macromorphological changes of reaction– answers of street woody plants of Kyiv megalopolis under stress level of technogenic pollution], Dopovidi NAN Ukrayiny, 6, 180–187 (in Ukrainian).
Mamaev, S. A., 1975. Osnovnyie printsipyi metodiki issledovaniya vnutrividovoy izmenchivosti drevesnyih rasteniy [The main steps of methodic of investigation intraspecific variability of woody plants Individual ecologogeographical variability of plants], Individualnaya ekologo-geograficheskaya izmenchivost rasteniy, Sb. nauchn. trudov, Uralskiy tsentr AN SSSR, Sverdlovsk, 3–16 (in Russian).
megalopolis conditions], Dopovidi NAN Ukrayiny, 3, 197–204 (in Ukrainian).
Metodicheskie ukazaniya po opredeleniyu tyazhelyih metalov v pochve selskohozyaystvennyih ugodiy i produktsii rastenievodstva, 1992 [Methodic guide for heavy metals identification in thel agricultural soil and crop production], Moscow (in Russian).
Petrushenko, V. V., 1981. Adaptivnyie reaktsii rasteniy: fiziko-himicheskiy aspekt [Adaptive responses of plants: the physical and chemical aspects], Vischa shk., Kyiv (in Russian).
Pochinok, H. N., 1976. Metodyi biohimicheskogo analiza rasteniy [Methods of plants biochemical analysis], Nauk. dumka, Kyiv (in Russian).
Pozolotina, V. N., Antonova, E. V., Bezel, V. S., Zhuykova, T. V., 2006. Puti adaptatsii tsenopopulyatsii oduvanchika lekarstvennogo k dlitelnomu himicheskomu i radiatsionnomu vozdeystviyu [Ways of coenopopulations of medical dandelion adaptation to the long-term chemical and radiation exposure], Ekologiya, 6, 440–445 (in Russian).
Radchenko, V. H., Lutsyshyn, O. H., Palapa, N. V., Yavorovskyy, P. P., Kolomiyets, N. V., Kovalova, O. M., Teslenko, I. K., 2010. Funktsionalnyy stan hirkokashtanu zvychaynoho (Aesculus hippocastanum L.) v umovakh tekhnohennoho zabrudnennya dovkillya Kyyivs'koho mehapolisu [Functional state of horse chestnut (Aesculus hippocastanum L.) in the conditions of Kyiv megalopolisis technogenic pollution], Ekology and Noospherology, 21, 1-2, 4–18 (in Ukrainian).
Romanov, V. O., Galelyuk, І. B., 2012. Kompyuternyy prylad dlya ekspresdiahnostyky stanu roslyn: rezul'taty mizhnarodnoho proektu po pidhotovtsi do seriynoho vypusku [The computer example for express diagnoses of plant state: Results of international project for preparing to the number issues], Kompyuterni zasoby, merezhi ta systemy, 11, 91–98 (in Ukrainian).
Savinov, A. B., Kurganova, L. N., Shekunov, Y. I., 2007. Intensivnost perekislogo okisleniya lipidov Taraxacum officinale Wig. i Vicia cracc L. v bIotopah s raznyimi urovnyami zagryazneniya pochv tyazhelyimi metalami [The intensity of superoxiding of Taraxacum officinale Wig. and Vicia cracc L. lipids in biotopes which have different levels of heavy metals soil pollution], Ekologiya, 3, 191–197(in Russian).
Seregin, I. V., Ivanov, V. B., 2001. Fiziologicheskie aspektyi tehnicheskogo deystviya kadmiya i svintsa na vyisshie rasteniya [Physiological aspects of the technical impact of cadmium and lead on higher plants], Fiziologiya rasteniy, 48 (4), 606–630 (in Russian).
Sheviakova, N. I., Kuznietsov, V. V., Karpatchevckij, L. O., 2000. Prichinyi i mehanizmyi gibeli zelenyih nasazhdeniy pri deystvii tehnogennyih faktorov gorodskoy sredyi i sozdanie stress-ustoychivyih fitotsenozov [The causes and mechanisms of destruction of green space by the action of manmade factors of the urban environment and the creation of stress-resistant plant communities], Lesnoy vestnik, 6 (15), 25–33 (in Russian).
Sluchik, І. Y., Stefurak, I. P., 2000. Akumulyatsiya vazhkykh metaliv u pahonakh vydiv rodu Populus v umovakh urbanizovanoho seredovyshcha [Accumulation of heavy metals in the shoots in species of genus Populus in the urban environment], Naukovyy visnyk Chernivetskoho un-tu, Biolohiya, 77, 51–59 (in Ukrainian).
Tsyifir, V. F., 1989. Metodicheskoe posobie po analiticheskim robotam dlya agrohimicheskoy sluzhbyi Ukranskoy SSR [Methodic textbook for analytic work of agrochemical service of Ukrainian SSR], Kyiv, Ukrainskiy filial TsINAO, Chast (in Russian).
Udovenko, G. V., 1988. Diagnostika ustoychivosti rasteniy k stressovyim vozdeystviyam [Diagnosis of plants resistance to stressing exposures], AN SSSR, Leningrad (in Russian).
Published
2014-09-17
How to Cite
Lucyshyn, O. G., & Teslenko, I. K. (2014). Species specificity of woody trees adaptation at technogenically transformed urbanhabitats of the Kyiv megalopolisis. Ecology and Noospherology, 26(3-4), 42-61. https://doi.org/10.15421/031519